
令和6年度

環境保全データ集

令和6年度「環境保全データ集」 目 次

第1部 概要

I.	大気	「環境の保全・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1	大気	汚染物質測定結果 ················	
	(1)	二酸化硫黄	
	(2)	二酸化窒素 · · · · · · 2	
	(3)	一酸化炭素・・・・・・・2	
	(4)	浮遊粒子状物質 (SPM) · · · · · · 2	
	(5)	微小粒子状物質 (PM2.5) ····· 2	
	(6)	光化学オキシダント・・・・・・・・・・・・・・・・2	
	(7)	炭化水素	
	(8)	有害大気汚染物質・・・・・・・・・・・・・・・・・・3	
2	大気:	環境保全の取組・・・・・・・・・・・・・・・・・・・・・・・・・・ 3	
	(1)	固定発生源対策・・・・・・3	
	(2)	移動発生源対策・・・・・・・・・・・・・・・・・ 4	
	(3)	緊急時の対策・・・・・・・・・・・・・・・・・・・・・・ 4	
II.		環境の保全・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
1	水質	汚濁物質測定結果 ······5	
	(1)	河川の水質・・・・・・・6	
	(2)	海域の水質・・・・・・・・・・・・・・・・・・・・・・・6	
	(3)	河川・海域の底質・・・・・・・ 7	
	(4)	地下水 7	
	(5)	海水浴場の水質・・・・・・・ 7	
	(6)	ダム貯水池等の水質調査・・・・・・・・ 7	
	(7)	要監視項目・・・・・ 7	
2	水環	境保全の取組・・・・・・・・・・・・・・・・・・・・・・・・・・・ 8	
	(1)	工場・事業場排水対策・・・・・・ 8	
	(2)	生活排水対策・・・・・・8	
	(3)	水質事故対応・・・・・・・9	
III.	_	環環境の保全・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
1	土壌	環境保全の取組・・・・・・・・・・・・・・・・・・・・・・・・・・・ 9	
	(1)	発生源対策・・・・・・9	
	(2)	汚染土壌対策・・・・・・9	
IV.		f公害対策の推進·····	9
1	騒音	測定結果 ······ 10	
	(1)	一般地域	
	(2)	道路に面する地域・・・・・・・・・・・・・・・・ 10	
	(3)	航空機騒音・・・・・・・・・・・・・・・・・・・・・ 11	
2		対策····· 11	
٧.		n公害対策の推進······1	2
1	振動	測定結果 ······12	
2		対策 ······ 12	
VI.	悪臭	!公害対策の推進 1	3

1	悪臭対策 ······ 13
VII.	化学物質による環境汚染の未然防止・・・・・・・・・・・・・・・・・・・・・・・・・ 1%
1	化学物質測定結果 ····································
	(1) ダイオキシン類・・・・・・・・・・・・・・・・・ 13
2	化学物質による環境汚染対策 ····································
	(1) ダイオキシン類・・・・・・・・・・・・・・・・・・ 15
	(2) 第1種指定化学物質 · · · · · · · · · · · · · · · · · 15
VIII	. 環境保全の総合的取組・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
1	指定工場制度 ····································
2	環境保全協定(公害防止協定) · · · · · · · · · · · · · · · · · · ·
3	公害の苦情処理 ····································
4	公害紛争処理制度 ····································
第2	部 環境保全データ
1	大気環境関係 18
2	水環境関係⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
3	土壤環境関係217
4	騒音公害関係 ······218
5	振動公害関係 231
6	悪臭公害関係 ·······234
7	化学物質汚染対策関係 ····································
8	総合的取組関係 ·······256
9	公害防止に関する特定施設等の届出状況······259

第1部 概 要

第1部 概要

私たちを取り巻く環境は大気、水、土壌といった様々な環境要素から成り立っている。私たちは日常活動や事業活動を行うことにより、これらの環境要素に対し様々な負荷を与えている。令和6年度も各環境要素の現況を把握するため様々な環境測定を実施し、環境への負荷低減を目指して対策を実施したので、これらの結果を公表する。

1. 大気環境の保全

大気汚染とは、工場・事業場における事業活動に伴って発生するばい煙や自動車などから排出される汚染物質及び光化学オキシダントなどの二次汚染物質によって空気が汚れ、人の健康や生活環境に悪い影響を与えるような状態をいう。大気汚染の原因となる物質には、二酸化硫黄、窒素酸化物、一酸化炭素、浮遊粒子状物質、微小粒子状物質、粉じん、光化学オキシダント、炭化水素などがある。このうち、二酸化硫黄、一酸化炭素、浮遊粒子状物質、光化学オキシダント、二酸化窒素、微小粒子状物質について、人の健康を保護し生活環境を保全する上で維持することが望ましい基準として、環境基準が設定されている。これらの大気汚染の状況については、長期的評価及び短期的評価を用い、環境基準への適合状況により評価している。また、非メタン炭化水素については、「光化学オキシダントの生成防止のための大気中炭化水素濃度の指針」が設定されている。なお、低濃度であっても長期間の暴露による健康への影響が懸念される有害大気汚染物質のうち、ベンゼン、トリクロロエチレン、テトラクロロエチレン及びジクロロメタンの4物質についても環境基準が設定されている。

第2部1-1 (P.18)

第2部1-2 (P.18)

第2部1-13 (P.31)

1 大気汚染物質測定結果

大気環境の汚染状況を把握するため、関係市町の協力を得ながら、県内の 28 の大気常時 測定局で測定を行い、テレメーターシステム等による常時監視を行っている。

第2部1-3 (P.19 \sim 20)

(1) 二酸化硫黄

二酸化硫黄の測定を 26 局で実施したところ、短期的評価及び長期的評価のいずれに おいても、すべての評価対象局 (24 局) で環境基準に適合していた。

第2部1-4 (P. 21 \sim 22)

(2) 二酸化窒素

二酸化窒素の測定を23局で実施したところ、すべての評価対象局(21局)で環境基準に適合していた。

第2部1-5 (P.23 \sim 24)

(3) 一酸化炭素

一酸化炭素の測定は和歌山市が自動車排出ガス測定局の1局で実施し、環境基準は 短期的及び長期的評価のいずれにおいても適合していた。

第2部1-6 (P.25)

(4) 浮遊粒子状物質(SPM)

浮遊粒子状物質の測定を 26 局で実施したところ、短期的評価及び長期的評価のいずれにおいても、すべての評価対象局 (25 局) において環境基準に適合していた。

第2部1-7 (P. 26 \sim 27)

(5) 微小粒子状物質 (PM2.5)

微小粒子状物質の測定を 14 局で実施した。環境基準は全ての評価対象測定局で適合 していた。

なお、環境省が定めた「注意喚起のための暫定的な指針」に基づき、注意喚起の実施 が必要となる日はなかった。

第2部1-8 (P. 27 \sim 28)

(6) 光化学オキシダント

3 市 10 局で常時監視測定を実施した。光化学オキシダントは、一年間で昼間の1時間値が1回でも環境基準値 (0.06ppm) を超えると環境基準未達成となるため、全局で環境基準不適合となった。

なお、一年間で昼間の1時間値が0.06ppm以下の割合(1年間の昼間の全測定時間に対する割合)は、94%(全測定局の平均)となっている。

また、5月から10月にかけて特別監視を実施した。緊急時の措置については「光化学オキシダント(スモッグ)緊急時対策実施要領」に基づき関係機関の協力を得て実施する。令和6年度は予報の発令が3回あったが、注意報の発令は0回であり、光化学オキシダントによる被害の届出は0件であった。

第2部1-9 (P.29) 第2部1-18 (P.37~38)

(7) 炭化水素

炭化水素については、1 市 1 局で常時監視測定を実施し、令和 6 年度の非メタン炭化 水素測定結果は、「光化学オキシダントの生成防止のための大気中炭化水素濃度の指針」 に定める指針値の範囲内又はそれ以下であり、年平均値も指針値の範囲以下であった。

第2部1-11 (P.30)

第2部1-12 (P.30)

(8) 有害大気汚染物質

有害大気汚染物質は、「継続的に摂取される場合には人の健康を損なうおそれがある物質で大気の汚染の原因となるもの」として大気汚染防止法で位置づけられており、中央環境審議会の答申において、「有害大気汚染物質に該当する可能性のある物質」として 248 物質が示されている。これら物質のうち健康リスクがある程度高いと考えられる優先取組物質 22 物質のうち、環境基準が定められている 4 物質(ベンゼン、トリクロロエチレン、テトラクロロエチレン、ジクロロメタン)、指針値が定められている 11 物質(アクリロニトリル、アセトアルデヒド、塩化ビニルモノマー、塩化メチル、水銀及びその化合物、ニッケル化合物、クロロホルム、1,2-ジクロロエタン、1,3-ブタジエン、ヒ素及びその化合物、マンガン及びその化合物)、その他 6 物質の計 21 物質の測定を、海南市、有田市及び岩出市の 3 地点で実施したところ、いずれも環境基準又は指針値に適合しており、その他物質も低濃度であった。

第2部1-13 (P.31)

第2部1-14 (P.32)

2 大気環境保全の取組

(1) 固定発生源対策

アばい煙

大気汚染防止法に基づき、ばい煙(硫黄酸化物、ばいじん、窒素酸化物等)を発生し、及び排出する施設(ばい煙発生施設)について事前に設置者に届出させ、ばい煙の排出基準に基づく排出規制等を行っている。加えて、工場又は事業場が集合し、大気環境基準の確保が困難な地域(和歌山市、海南市、有田市の区域)においては、特別排出基準を適用するとともに、工場又は事業場の単位での総量規制(本県においては、硫黄酸化物のみ)を行っている。なお、令和6年度末現在、大気汚染防止法に基づくばい煙発生施設の設置を届け出ている工場又は事業場数は387である。

また、特定の企業には、煙道テレメーターを配備し、硫黄酸化物や窒素酸化物の排出量を把握し、協定値等の遵守状況の確認を行っている。

イ 揮発性有機化合物

大気汚染防止法に基づき、揮発性有機化合物を排出する施設(揮発性有機化合物排出施設)について事前に設置者に届出させ、揮発性有機化合物の排出基準に基づく規制を

行っている。

なお、令和6年度末現在、大気汚染防止法に基づく揮発性有機化合物排出施設の設置 を届け出ている工場又は事業場数は6である。

ウ 粉じん

大気汚染防止法及び和歌山県公害防止条例に基づき、粉じんを発生する施設(一般粉じん発生施設)について事前に設置者に届出させ、構造、使用、管理に関する基準により規制している。なお、令和6年度に和歌山県公害防止条例に基づく有害物質に係る特定施設及び粉じんに係る特定施設の設置を届け出た工場又は事業場数は14であった。また、建築物等の解体作業等に伴う石綿飛散防止のため作業基準により規制している。

工 水銀

大気汚染防止法に基づき、水銀等を排出する施設(水銀排出施設)について事前に設置者に届出させ、水銀等の排出基準に基づく規制を行っている。令和6年度末現在、大気汚染防止法に基づく水銀排出施設の設置を届け出ている工場又は事業場数は37であった。

第2部1-15 (P.33) 第2部1-16 (P.34) 第2部9-1①~④ (P.259~261) 第2部9-2① (P.270)

(2) 移動発生源対策

自動車、船舶、鉄道等の移動発生源のうち、自動車排出ガスによる大気汚染が近年大都市地域を中心に著しくなり、その対策が求められてきた。自動車排出ガス低減のため、これまでに大気汚染防止法で段階的に個々の自動車に対して規制が加えられてきている。

また、自動車燃料品質に関する許容限度が定められている。

(3) 緊急時の対策

ア 光化学オキシダント緊急時対策

光化学オキシダント(スモッグ)による被害を未然に防止するため、オキシダント 濃度が上昇する夏季を中心に特別監視期間を設定し監視を強化するとともに、「光化 学オキシダント(スモッグ)緊急時対策実施要領」に基づき、緊急時には住民等への 周知及び対象工場・事業場に対する燃料使用量の削減要請等必要な措置を行う。

令和6年度は、予報の発令が3回、注意報の発令が0回であり、光化学オキシダントによる被害の届出は0件であった。

第2部1-18 (P.37~38)

イ 微小粒子状物質(PM2.5)に係る注意喚起

和歌山県では、環境省の「PM2.5 に関する専門家会合」報告を参考に、PM2.5 濃度が、暫定指針値である日平均値 $70\,\mu\,g/m^3$ を超えると予測される場合には、注意 喚起を実施することとしている。

【日平均値 70μg/m³を超えると予測される場合の判断基準】

- ①午前中の早めの時間帯での判断基準 午前5時~7時までの測定結果の平均値が85μg/m³を超過した場合
- ②午後からの活動に備えた判断基準 午前5時~12時までの測定結果の平均値が80μg/㎡を超過した場合

II. 水環境の保全

水質汚濁とは、工場・事業場、家庭等から排出される汚水によって、河川や海域の水質の 悪化や水底の土砂が汚染される現象をいう。一般に河川や海域には汚れをきれいにする自 然の働き(自浄作用)があるが、汚れがひどくなるにつれ、この自浄作用が働かなくなる。 水質汚濁が進行すると、農業や漁業等に被害をもたらすばかりではなく、人の健康にまで影響を及ぼす場合がある。

水質保全行政の目標として、達成・維持することが望ましい基準として環境基準が定められている。公共用水域の水質汚濁に係る環境基準として、人の健康の保護に関する環境基準(以下、「健康項目」という。)及び生活環境の保全に関する環境基準(以下、「生活環境項目」という。)がある。健康項目は、公共用水域全域が環境基準の適用対象であるが、生活環境項目については、利用目的等を考慮して類型指定を行っている水域のみが適用対象である。現在の環境基準類型指定状況は、河川においてはBOD等の環境基準指定水域が30水域(紀の川の水域は国が指定)、水生生物に係る環境基準指定水域が22水域(紀の川の水域は国が指定)である。また、海域においてはCOD等の環境基準指定水域が22水域、窒素・燐の指定水域が5水域である。さらに、地下水の水質汚濁に係る環境基準は、人の健康保護を目的として、全ての地下水を対象に定められている。

第2部2-1 (P.39 \sim 42)

1 水質汚濁物質測定結果

水環境の汚染状況を把握するため、水質測定計画に基づき公共用水域(河川・海域)、海水浴場、ダム貯水池等の水質調査を実施している。また、河川・海域の底質中の重金属等の含有量等の調査も実施している。

(1) 河川の水質

河川の環境基準の維持達成状況等を把握するため、28 河川 81 地点で調査を行った。 ※調査内訳:国土交通省近畿地方整備局 4 河川 11 地点、県 24 河川 52 地点、和歌山市 2 河川 18 地点。(なお、計 30 河川のうち貴志川及び熊野川の 2 河川は近畿地方整備局と県が地点を分けてそれぞれ調査を実施しています。)

ア 健康項目

ほう素 12 地点で環境基準不適合であった。その主な要因はいずれも海水の影響と 考えられる。

その他の健康項目は、環境基準に適合していた。

イ 生活環境項目

BOD(生物化学的酸素要求量)について、左会津川で環境基準を達成できなかった。

その主な要因は、川の流量・勾配が少なく河川自体の自浄作用が乏しいことから 工場・事業場排水及び生活排水の影響を受けたためと考えられる。

水生生物の保全に係る環境基準項目(全亜鉛、ノニルフェノール、直鎖アルキルベンゼンスルホン酸及びその塩(LAS))については、全ての基準点で環境基準を達成している。

その他の生活環境項目については、年間の評価方法が定められていないため、測 定日ごとに評価を行っている。

第2部2-2~2-24 (P. 42~131)

(2) 海域の水質

海域の環境基準の維持達成状況等を把握するため、12 海域 64 地点で調査を行った。 ※調査内訳:県10 海域 45 地点、和歌山市2 海域 19 地点

ア 健康項目

全ての項目で環境基準に適合していた。

イ 生活環境項目

COD (化学的酸素要求量) について、すべての水域において環境基準が達成できた。

全窒素・全りん(水の富栄養化を表す指標)については、全水域で環境基準を満足していた。

その他の生活環境項目については、年間の評価方法が定められていないため、測定 日ごとに評価を行っている。

> 第2部2-2~2-4 (P. $42\sim44$) 第2部2-25~2-38 (P. $132\sim206$)

(3) 河川・海域の底質

底質中の重金属等の含有量及び強熱減量の調査を実施した。水銀の含有量については、水銀を含む底質の暫定除去基準値未満であった。

第2部2-42 (P.213)

(4) 地下水

地下水に係る環境基準の維持達成状況等を把握するため、地域の全体的な地下水の概況を把握するための「概況調査」を 63 地点(国土交通省近畿地方整備局 1 地点、県 32 地点、和歌山市 30 地点)で行った。また、地下水の汚染の継続的な監視のための経年的な「定期モニタリング調査」を県が 9 地点、和歌山市が 6 地点で行った。

ア 概況調査

環境基準を超過した地点はなかった。

イ 定期モニタリング調査

硝酸性窒素及び亜硝酸性窒素の調査地点(県8地点、和歌山市4地点)のうち、6地点(県6地点)で環境基準値を超過した。

砒素の調査2地点(県1地点、和歌山市1地点)のうち、2地点(県1地点、和歌山市1地点)で環境基準値を超過した。

鉛の調査1地点(和歌山市1地点)は、環境基準値の超過はなかった。

第2部2-39 · 2-40 (P. 207~209)

(5) 海水浴場の水質

海水浴場の水質の現状を把握し、住民の利用に資するため、県内 20 か所において、遊 泳期間前(和歌山市及び白浜町調査は4月上旬、和歌山県調査は5月上旬)及び遊泳期 間中(7月下旬)において水質調査を実施し、調査の結果全ての海水浴場が良好な水質 を維持していた。

また、病原性大腸菌〇-157は全ての海水浴場で検出されなかった。

第2部2-41 (P.210 \sim 212)

(6) ダム貯水池等の水質調査

11 地点について年 2 回調査したところ、窒素による富栄養化について注意を要する条件 (9 h: 0.02mg/L以上かつ窒素/9 h=20以下) に 2 地点が当てはまった。

第2部2-43 (P.213)

(7) 要監視項目

人の健康の保護や水生生物の保全に関連する物質であるが、公共用水域等における 検出状況等からみて、現時点では直ちに環境基準の健康項目とせず、引き続き知見の集 積に努めるべきと判断される項目として、公共用水域では32項目、地下水では25項 目が環境省により設定されている。なお、令和2年には、当時から関心が高まっていた PFOS 及び PFOA が要監視項目に追加されている。

要監視項目に係る指針値の適合状況を把握するため、公共用水域 36 地点(県 20 地点、和歌山市 9 地点、国土交通省近畿地方整備局 7 地点)、地下水 63 地点(県 32 地点、和歌山市 30 地点、国土交通省近畿地方整備局 1 地点)で項目を選定して調査を実施した。

公共用水域ではすべての地点で指針値を満足していたが、地下水では PFOS 及び PFOA について 3 地点(和歌山市)で指針値を超過していた。

第2部2-24 (P. 131) 第2部2-9~2-23 (P. 50~P. 130) 第2部2-28~2-38 (P. 136~P. 206)

2 水環境保全の取組

(1) 工場·事業場排水対策

工場・事業場からの排水については、排水基準により許容限度を定め、規制している。 特に県が定めた4つの区域については、より厳しい許容限度の上乗せ排水基準を適用 している。また、瀬戸内海環境保全特別措置法適用地域については、化学的酸素要求量、 窒素含有量及びりん含有量に係る総量規制基準を定め、規制している。

令和6年度末現在、水質汚濁防止法に基づく特定施設の届出事業場数は3,054、有害物質貯蔵指定施設の届出事業場数は18、瀬戸内海環境保全特別措置法に基づく特定施設の許可事業場数は52である。(和歌山市を除く)

これらの工場・事業場に対し、県では計画的に立入調査を実施し、構造基準・排水基準に対する適合状況の監視を行うとともに、届出又は許可の内容から施設の状況等が変更されていないかを確認している。県は令和6年度に工場・事業場79件に立入を計画し、延べ61件に立ち入りした。立入時の排出水の検査項目数は、延べ617項目であり、その結果、排水基準に不適合であった工場・事業場は確認されなかった。

また、排水量 50 m³/日未満の排水基準(生活環境)適用外の事業場に対しては、必要に応じ「小規模事業場等未規制汚濁源に対する指導指針」(昭和 63 年策定、平成 20 年度改定)に基づき指導を行っている。

第2部9-1567 (P.261~263)

(2) 生活排水対策

公共用水域の水質汚濁の主な原因の一つとして、台所排水などの生活排水があげられる。生活排水の処理については、公共下水道、農業集落排水処理施設、漁業集落排水処理施設、合併処理浄化槽等の施設整備が重要であるが、県民一人ひとりがこの問題を自覚し、日常生活の中での心配りや工夫を行うことによって汚濁軽減を図ることも大

切であり、機会をとらえて水環境保全意識の啓発を図っている。

(3) 水質事故対応

河川等での魚のへい死、油流出、水の変色などの情報が得られた時には、流域住民の 健康保護及び生活環境保護のため、原因究明、発生源対策等を行っている。

なお、令和6年度の水質事故は、県全体で30件であった。

第2部2-44 (P.214~215)

III. 土壌環境の保全

土壌汚染とは、工場の操業に伴い、有害な物質を含む液体が地下に浸透する等により、土壌が有害な物質によって汚染された状態をいう。土壌汚染の中には、人間の活動に伴って生じた汚染だけではなく、自然由来のものも含まれる。

土壌環境に関する行政の目標として人の健康を保護し、及び生活環境を保全する上で維持することが望ましい基準として、29項目の土壌環境基準が定められている。

第2部3-1 (P.217)

1 土壌環境保全の取組

(1) 発生源対策

土壌への有害物質の排出を規制するため、水質汚濁防止法に基づき工場・事業場からの排水規制や有害物質を含む水の地下浸透禁止措置、大気汚染防止法に基づき工場・事業場からのばい煙の排出規制措置、廃棄物の処理及び清掃に関する法律に基づき廃棄物の適正処理確保のための規制措置等が講じられている。

(2) 汚染土壌対策

土壌汚染対策法では、土壌汚染状況調査、区域(要措置区域、形質変更時要届出区域)指定、管理の仕組みが定められており、有害物質の摂取経路を遮断し続けることにより、土壌汚染による人の健康被害を防止している。

令和7年3月末現在、土壌汚染対策法に基づく指定区域は24カ所(和歌山県指定の要措置区域1カ所、形質変更時要届出区域16カ所、和歌山市指定の形質変更時要届出区域7カ所)ある。

IV. 騒音公害対策の推進

騒音とは、「好ましくない音」、「ない方がよい音」の総称で、人に心理的・生理的な影響をもたらす。好みや感じ方に個人差があることから感覚公害と呼ばれている。騒音の発生形

態としては、工場・事業場、建設作業、交通機関、飲食店の深夜のカラオケ等多種多様である。

騒音から生活環境を保全する上で維持することが望ましい基準として環境基準がある。 市に属する地域は市長が、それ以外(町村)の地域は都道府県知事が環境基準の地域類型を 指定することとされている。県内では、和歌山市と海南市がそれぞれ和歌山市内と海南市内 に環境基準の類型指定を行っている。

また、騒音規制法により、市町村長は、指定地域内における自動車騒音が一定の限度(以下「要請限度」という。)を超えていることにより道路の周辺の生活環境が著しく損なわれると認めるときは、都道府県公安委員会に対し、道路交通法の規定による措置を執るべきことを要請するものとされている。令和元年度までは、一部の市町について自動車騒音に係る要請限度の区域指定が行われていたが、令和2年度からは、各市町村で同要請限度の区域指定が行われている(町村の区域指定については県、市の区域指定については市が実施)。

第2部4-1·4-2 (P. 218~219)

1 騒音測定結果

騒音の状況を把握するため、県は道路に面する地域の騒音測定及び航空機騒音測定を実施しており、和歌山市と海南市は道路に面する地域及びそれ以外の地域(一般地域)の騒音測定を、田辺市と新宮市は道路に面する地域の騒音測定を実施している。また、阪和自動車道、湯浅御坊道路及び紀勢自動車道並びに京奈和自動車道の騒音測定を県と沿線市町が協力して実施している。

(1) 一般地域

和歌山市と海南市は、騒音に係る環境基準の類型指定を行っている地域を対象に、環境基準達成状況の調査を実施している。令和6年度の達成状況は、10地点中全地点において昼間・夜間とも基準を達成していた。

第2部4-4① (P. 220)

(2) 道路に面する地域

県、和歌山市、海南市、田辺市、新宮市は、道路交通センサス等の通行量調査をもとに、交通量が多く沿線に住居が多い路線を対象に環境基準達成状況等の調査を実施している。地理情報システム(GIS)を使って、114路線において道路沿道の住居等を面的評価により推定した結果、和歌山市内では、昼間は98.3%、夜間は98.6%の達成率、海南市では、昼間は95.8%、夜間は99.1%の達成率、田辺市内では、昼間は99.8%、夜間は100%の達成率、新宮市内では、昼間は100%、夜間は100%、県測定区域内では、昼間は99.0%、夜間は98.3%の達成率である。

また、県、和歌山市、海南市、有田川町、日高川町、御坊市、印南町、みなべ町、田

辺市、上富田町及び白浜町で令和6年5月、6月に阪和自動車道、湯浅御坊道路及び紀勢自動車道の騒音調査を実施した。等価騒音レベルを見ると、昼間の時間帯では53.5~63.3 デシベル、夜間の時間帯では48.2~59.5 デシベルで、幹線交通を担う道路に係る環境基準及び要請限度を参考に比較したところ、昼夜ともに環境基準及び要請限度の値を下回っていた。

加えて、県、岩出市、紀の川市、橋本市及びかつらぎ町でも同期間内に京奈和自動車道の騒音調査を実施した。等価騒音レベルを見ると、昼間の時間帯では59.2~69.7 デシベル、夜間の時間帯では56.6~66.1 デシベルで、幹線交通を担う道路に係る環境基準及び要請限度を参考に比較したところ、2 地点において自動車以外の音により夜間の環境基準を超過したと思われるが、他の地点においては昼夜ともに環境基準及び要請限度の値を下回っていた。

第 2 部 4 - 4 ② \sim ⑥ (P. 221 \sim 223) 第 2 部 4 - 5 (P. 224 \sim 227)

(3) 航空機騒音

現在、南紀白浜空港には定期便が3往復/日就航しており、航空機騒音の影響を把握するため、同空港の騒音調査を継続的に実施している。平成26年10月には、空港周辺地域に対し、航空機騒音に係る環境基準の類型指定を行っている。

周辺地域において令和 5 年 10 月 18 日から 24 日までの 7 日間、調査を実施したところ、航空機騒音 (時間帯補正等価騒音レベル) は安久川漁民集会所で 44.7 デシベル、白浜町役場で 47.1 デシベル、南紀白浜空港東側斜面で 47.2 デシベルであり、3 地点とも環境基準値の範囲内であった。なお、旧南紀白浜空港エプロンが使用できなくなったため、今回の測定から南紀白浜空港東側斜面にて測定を行っている。

第2部4-3 (P.220) 第2部4-6 (P.229)

2 騒音対策

風力発電施設から発生する騒音についての対策を強化するため、平成30年度に県公害防止条例に基づく騒音に係る特定施設に風力発電施設(出力20キロワット以上)を追加し、平成31年4月1日から同条例に基づく事業者指導を行っている。なお、指導にあたっては、風力発電施設から発生する騒音に関する指針(環境省)に基づく環境保全対策についても実施するよう、事業者に求めている。

令和2年4月1日より、県内全域を騒音規制法に規定する指定地域とし、各市町村が各 法及び県公害防止条例に基づく特定施設設置届等に係る事務を実施している(風力発電 施設に係るものを除く)。今後は、風力発電事業者への指導等、引き続き県が実施する事 務に注力しつつ、市町村と連携の上、県内の騒音規制行政を進めていく。 自動車騒音については、発生源対策や道路構造対策、人・物流対策など総合的な観点から道路交通対策に取り組む必要があり、今後も環境基準適合状況等の情報を公開・発信していく。

第2部4-7·4-8 (P. 230) 第2部9-1® (P. 264) 第2部9-2② (P. 271)

V. 振動公害対策の推進

振動は、「人為的な揺れ」で、騒音と同じく人に心理的・生理的な影響をもたらす。発生 形態としては、工場・事業場、建設作業、交通機関等多種多様であり、中には物的被害が生 じる場合もある。

振動規制法により、市町村長は、指定地域内における道路交通振動が一定の限度(以下「要請限度」という。)を超えていることにより道路の周辺の生活環境が著しく損なわれると認めるときは、道路管理者に対し当該道路部分について、道路交通振動の防止のための舗装、維持又は修繕の措置を執るべきことを要請するか、都道府県公安委員会に対し、道路交通法の規定による措置を執るべきことを要請するものとされている。

第2部5-1 (P.231)

1 振動測定結果

道路交通振動の大きさを把握するため、和歌山市が振動測定を実施しており、令和6年度調査の結果、振動レベルは、昼間の時間帯で34~56デシベル、夜間の時間帯で31~53デシベルであり、各測定地点とも要請限度値以下であった。

第2部5-2 (P.232)

2 振動対策

令和2年4月1日より、県内全域を振動規制法に規定する指定地域とし、各市町村が 各法及び県公害防止条例に基づく特定施設設置届等に係る事務を実施している。今後は、 市町村と連携の上、県内の振動規制行政を進めていく。

> 第2部5-3・5-4 (P. 233) 第2部9-1 (P. 265) 第2部9-2 (P. 272)

VI. 悪臭公害対策の推進

悪臭とは、人に不快感を与える臭いであるが、感知の程度に個人差があり、また、悪臭に対する順応性もみられることから、悪臭を客観的に評価することが困難となっている。悪臭の発生源としては、肥料製造工場、化学工場、食品製造工場、畜産業等多岐にわたっている。

1 悪臭対策

令和2年4月1日から県内全域が悪臭防止法の指定地域となったため、県内全域で各市町村により悪臭防止法に基づく事務が実施される体制となっている。今後は、市町村と連携の上、県内の悪臭防止行政を進めていく。

第2部6-1 (P.234)

VII. 化学物質による環境汚染の未然防止

様々な事業活動に伴い、多様な物質が意図的・非意図的に生成され使用、排出されている。 これらの物質の中には少量でも強い毒性を有するものや長期間暴露することにより人の健 康、生態系や自然環境に悪影響を及ぼすことが懸念される物質がある。

環境リスクの高い一部の物質は、大気汚染防止法や水質汚濁防止法などの個別法により 規制・監視されているが、多くの化学物質は、環境中での存在量や動態が未解明であるため、 「特定化学物質の環境への排出量の把握等及び管理の改善の促進に関する法律」や「ダイオ キシン類対策特別措置法」に基づき、環境リスク低減のための対策を推進している。

ダイオキシン類による大気の汚染、水質の汚濁及び土壌の汚染から、人の健康を保護する 上で維持されることが望ましい基準として、環境基準が定められている。

第2部7-1 (P.235)

1 化学物質測定結果

ダイオキシン類による汚染状況を調査するため、大気、公共用水域、地下水及び土壌の調査を実施している。

ダイオキシン類

和歌山市域については、和歌山市が調査を実施し、同市を除く地域については、和歌山県が調査を実施した。

また、国土交通省直轄河川(紀の川・熊野川)については、国土交通省が調査を実施 した。

第2部7-2 (P.235)

ア 大気調査

和歌山市域については、一般環境4地点及び発生源周辺1地点で年2回調査を実施し、和歌山市を除く地域については、一般環境7地点でそれぞれ年2回調査を実施し、全ての地点で環境基準を満足していた。

第2部7-3 (P. 236~237)

イ 公共用水域(水質・底質)調査

和歌山市域については、河川 11 地点のうち 9 地点で年 2 回、2 地点で年 1 回、海域 10 地点で年 1 回調査を行い、水質は合計 21 地点、底質は合計 19 地点で常時監視を実施した。

和歌山市を除く地域については、海南地区公共用水域の河川 2 地点、海域 1 地点で年 2 回、その他の地点で年 1 回調査を行い、水質は合計 35 地点、底質は合計 22 地点で常時監視を実施した。

また、国土交通省直轄河川 (紀の川・熊野川) については年1回、水質及び底質の調査を実施した。

調査の結果、水質及び底質ともに、全ての地点で環境基準を満足していた。

環境継続調査とは別に海南地区公共用水域で行っているモニタリング調査については、水質調査結果は環境基準を満たしており、底質調査結果は7地点のうち1地点で環境基準を超過しているが、過去からの同地点におけるダイオキシン類濃度結果の推移からは減少・横ばい傾向にある。また当該水域で水生生物調査を行った結果、全国平均と同程度であった。

第2部7-4·7-5 (P. 238 \sim 247) 第2部7-9·7-10 (P. 251 \sim 255)

ウ 地下水調査

和歌山市域については、4地点で年1回調査を実施し、和歌山市を除く地域については、10地点で年1回調査を実施した。全ての地点で環境基準を満足していた。

第2部7-6 (P.248)

エー土壌調査

和歌山市域については、一般環境4地点で年1回調査を実施し、和歌山市を除く地域については、一般環境10地点、発生源2施設の周辺8地点で年1回調査を実施し、全ての地点で環境基準を満足していた。

第2部7-7·7-8 (P. 249 \sim 250)

2 化学物質による環境汚染対策

(1) ダイオキシン類

工場・事業場からのダイオキシン類の排出については、排出基準により許容限度を定め、排出ガス及び排出水の濃度を規制している。

ダイオキシン類対策特別措置法に基づく特定施設数は、令和6年度末現在、大気基準 適用施設が107、水質基準対象施設が22である。

特定施設設置者からの測定結果報告等により、排出基準の適合状況を確認し、必要に 応じて特定事業場への立入調査を実施している。

第2部9-1⑩ (P. 266~269)

(2) 第1種指定化学物質

「特定化学物質の環境への排出量の把握等及び管理の改善の促進に関する法律」に基づき、「化学物質排出移動量届出制度」(いわゆる「PRTR制度」)の届出が平成14年度より開始され、環境中に広く継続的に存在し、人の健康や生態系に悪影響を及ぼす恐れのある515種類の有害化学物質(第1種指定化学物質)について、事業者が、前年度にどれだけ環境に排出したかを毎年4月1日から6月30日の期間で届出を行うこととなっている。

この届出の集計結果及び国からの届出対象外の推計結果から、化学物質の環境への 排出の実態を把握し、また公表することにより企業への自主的な管理・削減を促し、環 境汚染の未然防止に努めている。

令和5年度の届出事業所数は、和歌山県で251事業所(全国の0.77%、全国32,502事業所)であり、事業者から届出のあった当該事業所からの排出量については、全事業所・全物質の合計で850トン(全国の0.62%、全国136,877トン)、移動量の合計は4,285トン(全国の1.61%、全国265,789トン)、排出量・移動量の合計は5,135トン(全国の1.28%、全国402,666トン)となっている。

第2部9-3 (P.273)

VIII. 環境保全の総合的取組

1 指定工場制度

和歌山県公害防止条例においては、工場全体を規制する指定工場制を設け、1時間当たりの燃料使用能力が5,000 リットル(重油換算)以上または、一日当たりの総排水量が5,000 立方メートル以上の工場を指定工場とし、和歌山市、海南市及び有田市に立地する場合は、その新設及び変更について、知事の許可を必要としている。現在は9工場が指定工場の設置許可を受けており、そのうち和歌山市内の6工場に関する事務は、和歌山市に事務委任して

第2部8-1 (P.256)

2 環境保全協定(公害防止協定)

大規模工場からの公害は広範囲に影響を及ぼす恐れがあることから、地域住民の健康を守り、生活環境の保全を図るため、関係市町とともに事業者との間に環境保全協定(公害防止協定)を締結し、総量規制方式による規制の充実、監視体制の確立や公害防止施策による計画的な整備などを図ってきた。

協定締結後も地域の状況や工場の稼働状況等、公害の実態に合わせ効果的な環境保全を 図るべく必要に応じ適宜見直しを行っている。

第2部8-2 (P.257)

3 公害の苦情処理

県及び市町村は、県民から寄せられる公害の苦情に対応するため、県立各保健所及び市町村の環境担当課を窓口として、処理に努めている。令和6年度中に県及び市町村が新規に受理した公害苦情件数は、717件(県96件、市町村621件)であった。

公害苦情件数を種類別に見ると、典型 7 公害に関する苦情は 315 件で、その中では騒音・振動に関する苦情が最も多く 90 件(12.5%)で、以下、大気汚染 81 件(11.3%)、水質汚濁 74 件(10.3%)、悪臭 69 件(9.6%)、土壌汚染 1 件(0.1%)、地盤沈下 0 件(0%)の順となっている。典型 7 公害以外の公害苦情は 402 件で、不法投棄に関する苦情が 53 件(7.3%)と最も多くなっている。

第2部8-3 (P.258)

4 公害紛争処理制度

公害に係る紛争について、公害紛争処理法に基づき公害審査委員候補者を委嘱しており、 住民から公害紛争に係る調停等の申請が出された場合、その中から委員を指名して調停(仲 裁、あっせん)委員会を開催し、解決を図っている。

公害紛争に係る案件については、従来の産業型公害だけでなく都市・生活型公害や有害化 学物質問題なども課題となっており、さらに、今後、開発における自然の保護や保全対策の 実施の問題など、住民の環境に対する価値観はますます多様化することが予想される。 第2部 環境保全データ

<u> 1</u>	大気境境関係	18
1	- 1 大気汚染に係る環境基準	18
	- 2 大気汚染に係る環境基準の評価方法一覧	
1	- 3 大気常時測定局位置図	
'	① 大気常時測定局位置図	. 13
	② 大気常時測定局の概要一覧	
4		0.1
ı	- 4 二酸化硫黄濃度測定結果	. 21
	① 二酸化硫黄濃度年間測定結果一覧	
	② 二酸化硫黄濃度地域別月平均値変化図	00
1	- 5 二酸化窒素濃度測定結果	. 23
	① 二酸化窒素濃度年間測定結果一覧	
	② 二酸化窒素濃度地域別月平均値変化図24	
1	6 一酸化炭素濃度測定結果	. 25
	① 一酸化炭素濃度年間測定結果一覧25	
	② 一酸化炭素濃度地域別月平均値変化図25	
1	7 浮遊粒子状物質濃度測定結果	. 26
	① 浮遊粒子状物質濃度年間測定結果一覧26	
	② 浮遊粒子状物質濃度地域別月平均値変化図27	
1	-8 微小粒子状物質濃度測定結果	. 27
	① 微小粒子状物質濃度年間測定結果一覧27	
	② 微小粒子状物質濃度地域別月平均値変化図28	
1	- 9 光化学オキシダント濃度年間測定結果一覧	. 29
1	-10 光化学オキシダントの生成防止のための大気中炭化水素濃度の指針	. 29
1	- 1 1 非メタン炭化水素濃度年間測定結果一覧	. 30
1	- 1 2 炭化水素メタン濃度年間測定結果一覧	. 30
1	- 13 有害大気汚染物質環境基準及び指針値一覧	. 31
	(1) 有害大気汚染物質 (ベンゼン等) に係る環境基準一覧	
	② 環境中の有害大気汚染物質による健康リスクの低減を図るための指針となる数値	(指針値)
1	- 1 4 有害大気汚染物質測定結果一覧	32
	- 1 5 発生源常時監視局	
	- 16 特定粉じん(アスベスト)排出等作業現場での大気中アスベスト濃度	
'	数)測定結果	
1	- 17 風向頻度、平均風速及び風配図	
'	① 風向頻度と平均風速及び風配図	. 33
	(2) 風配図	
4	□ 18 光化学オキシダント(スモッグ)発令状況	27
ı		. 37
	① 令和6年度光化学オキシダント(スモッグ)発令状況	
	② 光化学オキシダント(スモッグ)発令及び被害届出人数の推移38	
2	水環境関係	39
2	! - 1 公共用水域における水質汚濁に係る環境基準等一覧	30
_	. 一 公共用小域にのける小貝//側に除る環境基準等	. 33

	② 生活環境の保全に関する基準40	
	③ 公共用水域における水質汚濁に係る環境基準の年間達成状況の評価方法42	
2	-2 水質測定結果一覧(2-9~2-23、2-28~2-38)の見方.	42
2	- 3 県内主要河川・海域図	43
2	- 4 水質の推移	44
	① 主要河川の水質【BOD】の推移(75%値)44	
	② 中小都市河川の水質【BOD】の推移(75%値)44	
	③ 主要海域の水質【COD】の推移(75%値)44	
	- 5 河川の水域・項目別測定回数一覧	
2	- 6 河川のBODの水域別環境基準達成状況一覧	47
2	- 7 河川における人の健康の保護に関する環境基準超過状況一覧	48
2	-8 河川の水生生物の保全に関する項目の水域別環境基準達成状況一覧	49
2	- 9 紀の川水域水質測定結果	50
	① 紀の川水域測定点図50	
	② 紀の川のBOD75%値の推移50	
	③ 紀の川水域水質測定結果一覧51	
2	- 10 橋本川・嵯峨谷川・雨天樋川水域水質測定結果	57
	① 橋本川水域測定点図57	
	② 嵯峨谷川、雨天樋川水域測定点図58	
	③ 橋本川・嵯峨谷川・雨天樋川水域水質測定結果一覧59	
2	- 1 1 桂谷川・貴志川・柘榴川水域水質測定結果	63
	① 桂谷川水域測定点図63	
	② 貴志川・柘榴川水域測定点図64	
	③ 桂谷川・貴志川・柘榴川水域水質測定結果一覧65	
2	- 12 日方川・山田川(海南)水域水質測定結果	71
	① 日方川・山田川 (海南) 水域測定点図71	
	② 日方川・山田川(海南)水域水質測定結果一覧72	
2	- 1 3 有田川・山田川 (湯浅)・広川水域水質測定結果	76
	① 有田川・山田川(湯浅)・広川水域測定点図76	
	② 有田川のBOD75%値の推移76	
	③ 有田川・山田川 (湯浅)・広川水域水質測定結果一覧	
2	- 1 4 日高川・切目川水域水質測定結果	81
	① 日高川水域測定点図81	
	② 切目川水域測定点図82	
	③ 日高川のBOD75%値の推移82	
_	4 日高川・切目川水域水質測定結果一覧	0.0
2	- 1 5 南部川水域水質測定結果	88
	① 南部川水域測定点図	
	② 南部川のBOD75%値の推移	
_	③ 南部川水域水質測定結果一覧	0.1
2	- 1 6 左会津川水域水質測定結果	91
	① 左会津川水域測定点図	
	② 左会津川のBOD75%値の推移	
^	③ 左会津川水域水質測定結果一覧92	٥٢
2	- 17 富田川水域水質測定結果	95
	(1) 富田川水域測定点図95	

	② 富田川のBOD75%値の推移	. 95	
	③ 富田川水域水質測定結果一覧	. 96	
2	- 18 日置川水域水質測定結果		. 98
	① 日置川水域測定点図	. 98	
	② 日置川のBOD75%値の推移	. 98	
	③ 日置川水域水質測定結果一覧	. 99	
2	- 19 古座川水域水質測定結果		101
	① 古座川水域測定点図	101	
	② 古座川のBOD75%値の推移	101	
	③ 古座川水域水質測定結果一覧	102	
2	-20 太田川水域水質測定結果		104
	① 太田川水域測定点図	104	
	② 太田川水域水質測定結果一覧	105	
2	一21 那智川・二河川水域水質測定結果		107
	① 那智川・二河川水域測定点図	107	
	② 那智川・二河川水域水質測定結果一覧	108	
2	一22 熊野川水域水質測定結果		112
	① 熊野川水域測定点図	112	
	② 熊野川のBOD75%値の推移	112	
	③ 熊野川水域水質測定結果一覧	113	
2	- 23 和歌山市の水質測定結果		118
	① 内川水域(河川)、築地川及び水軒川水域(海域)測定点図(和歌山市測定分)		
	② 土入川水域(河川)測定点図(和歌山市測定分)		
	③ 大門川・有本川・真田堀川・和歌川・市堀川・和田川・土入川水域水質測定結		
	- 2 4 河川における要監視項目の測定結果及び指針値		
	- 2 5 海域の水域・項目別測定回数一覧		
	- 2 6 海域のCODの水域別環境基準達成状況一覧		
	- 27 海域の窒素・燐の水域別環境基準達成状況一覧		
2			136
	① 海南海域測定点図		
	② 海南海域のCOD75%値の推移		
_			
2	③ 海南海域水質測定結果一覧		4.40
	- 29 下津・初島海域水質測定結果		142
	-29 下津・初島海域水質測定結果 ① 下津・初島海域測定点図	142	142
	-29 下津・初島海域水質測定結果 ① 下津・初島海域測定点図 ② 下津・初島海域のCOD75%値の推移	142 142	142
•	-29 下津・初島海域水質測定結果 ① 下津・初島海域測定点図 ② 下津・初島海域のCOD75%値の推移 ③ 下津・初島海域水質測定結果一覧	142 142 143	
2	-29 下津・初島海域水質測定結果 ① 下津・初島海域測定点図. ② 下津・初島海域のCOD75%値の推移. ③ 下津・初島海域水質測定結果一覧. -30 湯浅湾海域水質測定結果.	142 142 143	
2	-29 下津・初島海域水質測定結果 ① 下津・初島海域測定点図. ② 下津・初島海域のCOD75%値の推移. ③ 下津・初島海域水質測定結果一覧. -30 湯浅湾海域水質測定結果. ① 湯浅湾海域測定点図.	142 142 143 	
2	-29 下津・初島海域水質測定結果 ① 下津・初島海域のCOD75%値の推移 ③ 下津・初島海域水質測定結果一覧 -30 湯浅湾海域水質測定結果 ① 湯浅湾海域測定点図 ② 湯浅湾海域のCOD75%値の推移	142 142 143 150	
	-29 下津・初島海域水質測定結果 ① 下津・初島海域のCOD75%値の推移. ② 下津・初島海域水質測定結果一覧. -30 湯浅湾海域水質測定結果 ① 湯浅湾海域側定点図. ② 湯浅湾海域のCOD75%値の推移. ③ 湯浅湾海域水質測定結果一覧.	142 142 143 150 150	150
	-29 下津・初島海域水質測定結果 ① 下津・初島海域のCOD75%値の推移 ③ 下津・初島海域水質測定結果一覧 -30 湯浅湾海域水質測定結果 ① 湯浅湾海域測定点図 ② 湯浅湾海域水質測定結果 ③ 湯浅湾海域水質測定結果 ③ 湯浅湾海域水質測定結果一覧 -31 由良湾海域水質測定結果	142 142 143 150 150	150
	-29 下津・初島海域水質測定結果 ① 下津・初島海域のCOD75%値の推移 ③ 下津・初島海域水質測定結果一覧 -30 湯浅湾海域水質測定結果 ① 湯浅湾海域測定点図 ② 湯浅湾海域のCOD75%値の推移 ③ 湯浅湾海域水質測定結果一覧 -31 由良湾海域水質測定結果 ① 由良湾海域水質測定結果 ① 由良湾海域水質測定結果	142 142 143 150 150 150	150
	-29 下津・初島海域水質測定結果 ① 下津・初島海域のCOD75%値の推移 ③ 下津・初島海域水質測定結果一覧 -30 湯浅湾海域水質測定結果 ① 湯浅湾海域水質測定結果 ② 湯浅湾海域のCOD75%値の推移 ③ 湯浅湾海域水質測定結果一覧 -31 由良湾海域水質測定結果 ① 由良湾海域測定点図 ② 由良湾海域のCOD75%値の推移	142 142 143 150 150 150 156 156	150
2	 -29 下津・初島海域水質測定結果 ① 下津・初島海域測定点図. ② 下津・初島海域のCOD75%値の推移. ③ 下津・初島海域水質測定結果一覧. -30 湯浅湾海域水質測定結果 ① 湯浅湾海域水質測定結果 ② 湯浅湾海域のCOD75%値の推移. ③ 湯浅湾海域水質測定結果一覧. -31 由良湾海域水質測定結果 ① 由良湾海域水質測定結果 ① 由良湾海域のCOD75%値の推移. ② 由良湾海域のCOD75%値の推移. ③ 由良湾海域水質測定結果一覧. 	142 142 143 150 150 150 156 156 157	150 156
2	-29 下津・初島海域水質測定結果 ① 下津・初島海域のCOD75%値の推移 ③ 下津・初島海域水質測定結果一覧 -30 湯浅湾海域水質測定結果 ① 湯浅湾海域水質測定結果 ② 湯浅湾海域のCOD75%値の推移 ③ 湯浅湾海域水質測定結果一覧 -31 由良湾海域水質測定結果 ① 由良湾海域測定点図 ② 由良湾海域のCOD75%値の推移	142 142 143 150 150 150 156 156 157	150 156

	② 騒音に係る環境基準についての地域の類型指定		
4	- 1 騒音に係る環境基準一覧 ① 一般地域(道路に面する地域以外の地域)の基準 218	218	
	<u>騒音公害関係</u>	010	<u>218</u>
	8 — 1 土壌の汚染に係る環境基準一覧	217	210
	土壤環境関係	<u> </u>	<u>217</u>
•			017
	① 一覧表 214 ② 事故概要別集計表 215		
2	2 - 4 4 令和 6 年度水質事故一覧	214	
	2 - 4 3 ダム貯水池等の水質調査結果一覧		
	2-42 底質調査結果一覧		
	③ 水浴場水質判定基準212		
	② 水浴場調査結果一覧211		
_	① 水浴場調査地点図	•	
	2-41 水浴場調査結果一覧		
2	・② 調査地点208 ! - 4 O 地下水の定期モニタリング調査結果	209	
	① 調査結果概要		
2	2 - 3 9 地下水の概況調査	207	
_	② 和歌山海域水質測定結果一覧190	207	
	① 和歌山海域測定点図(和歌山市測定分)		
2	2 - 3 8 和歌山海域水質測定結果	189	
	③ 三輪崎海域水質測定結果一覧		
	② 三輪崎海域のCOD75%値の推移184		
	① 三輪崎海域測定点図184		
2	! 一37 三輪崎海域水質測定結果	184	
	③ 勝浦湾海域水質測定結果一覧180		
	② 勝浦湾海域のCOD75%値の推移179		
	① 勝浦湾海域測定点図179		
2	3 6	179	
	(3) 串本海域水質測定結果一覧		
	② 串本海域のCOD75%値の推移		
_	(1) 串本海域測定点図	.,.	
2	! - 3 5 串本海域水質測定結果	174	
	(2) すさみ海域水質測定結果一覧		
_	① すさみ海域測定点図	172	
2	2-34 すさみ海域水質測定結果	172	
	(3) 田辺湾海域水質測定結果一覧		
	① 田辺湾海域測定点図		
2	2 - 3 3 田辺湾海域水質測定結果	105	
_	③ 日高海域水質測定結果一覧161	105	
	② 日高海域のCOD75%値の推移160		

	(4) 幹線交通を担う道路に近接する空間における特例基準		
4		. 219	
	(1) 自動車騒音に係る要請限度一覧		
	② 幹線交通を担う道路に近接する区域に係る限度の特例基準219		
	③ 自動車騒音に係る要請限度の地域の類型指定(県指定分)219		
4	- 3 航空機騒音に係る環境基準一覧	. 220	
	(1) 航空機騒音に係る環境基準一覧		
	② 航空機騒音に係る環境基準の地域の類型指定		
4	- 4 騒音に係る環境基準達成状況またはその推定	. 220	
	① 和歌山市、海南市の一般地域における騒音に係る環境基準達成状況 220		
	② 和歌山市の道路に面する地域における騒音に係る環境基準達成状況の推定 221		
	③ 海南市の道路に面する地域における騒音に係る環境基準達成状況の推定 222		
	④ 田辺市の道路に面する地域における騒音に係る環境基準達成状況の推定 222		
	(5) 新宮市の道路に面する地域における騒音に係る環境基準達成状況の推定 223		
	(6) 町村の区域の道路に面する地域における騒音に係る環境基準達成状況の推定(和歌)	[[県測]	定分)
	223	4 7 N IA	<i>//</i> 3/
4	- 5 阪和自動車道、湯浅御坊道路及び紀勢自動車道並びに京奈和自動車道	∮騒 さ	測定
_			/X1 XC
	① 測定地点図	. 227	
	② 基準時間帯ごとにおける等価騒音レベル測定結果		
	(3) 自動車道路の騒音測定結果		
	(4) 各自動車道の交通量内訳		
4	- 6 南紀白浜空港周辺地域における航空機騒音に係る環境基準の達成状況.	229	
_	① 南紀白浜空港周辺地域における航空機騒音測定地点図	. 220	
	② 南紀白浜空港周辺地域における航空機騒音に係る環境基準の達成状況 229		
1	- 7 騒音に係る規制基準 (騒音規制法)	230	
_	(1) 騒音規制法第3条第1項に規定する騒音規制地域(県指定分:令和2年4月1日以		230
	② 特定工場等において発生する騒音の規制基準(騒音規制法第4条第1項) 230	J-4-7	200
1	- 8 騒音に係る排出基準(和歌山県公害防止条例施行規則第7条)	230	
4	O 融目に味る近日至牛(伯畝日末五日的正末例旭刊が則第7末/	. 200	
<u>5</u>	振動公害関係		<u>231</u>
5	- 1 道路交通振動に係る要請限度	231	
Ü	① 道路交通振動に係る要請限度一覧	. 201	
	② 道路交通振動に係る要請限度の区域指定一覧(県指定分:令和2年4月1日以降)		231
	(3) 道路交通振動に係る要請限度の昼間及び夜間の時間の指定		201
5	- 2 和歌山市道路交通振動測定及び交通量調査結果一覧	232	
	- 2 和歌山中追路又通號勤測足及び又通量調査相架 寛		
J	- 3 振動に除る尻削基準(振動尻削法) ① 振動規制法第3条第1項に規定する振動規制地域(県指定分:令和2年4月1日以		233
	② 特定工場等において発生する振動の規制基準(振動規制法第4条第1項) 233	平)	۷٥٥
_	(2) 特定工場等において発生する振動の規制基準(振動規制法第4条第1項) 233 - 4 振動に係る排出基準(和歌山県公害防止条例施行規則第7条)	222	
3	一年 派判にはるが山本牛(和歌山宗公古初山宋例旭行观則弟/宋)	. ZJJ	
<u>6</u>	悪臭公害関係		234
6	- 1 悪臭に係る規制地域及び規制基準(県指定分:令和2年4月1日以降)	234	
J	(1) 悪臭防止法第3条第1項に規定する悪臭原因物の規制地域	207	
	(2) 事業場における特定悪臭物質の規制基準		
	- 1 日 /		

1 大気環境関係

1-1 大気汚染に係る環境基準

物質 (告示年月日)	環境上の条件	測定方法
二酸化硫黄 (昭和 48 年 5 月 16 日)	1 時間値の 1 日平均値が 0.04ppm 以下であり、かつ、1 時間値が 0.1ppm 以下であること。	溶液導電率法又は紫外線蛍光法
一酸化炭素 (昭和 48 年 5 月 8 日)	1 時間値の1日平均値が10ppm 以下であり、かつ、1 時間値の8時間平均値が20ppm 以下であること。	非分散型赤外分析計を用いる方法
浮遊粒子状物質 (昭和 48 年 5 月 8 日)	1 時間値の 1 日平均値が 0.10mg/m ³ 以下であり、かつ 1 時間値が 0.20mg/m ³ 以下であること。	ろ過捕集による重量濃度測定方法又はこの方法によって測定された重量濃度と直線的な関係を有する量が得られる光散乱法、圧電天びん法若しくはベータ線吸収法
光化学オキシダント (昭和 48 年 5 月 8 日)	1 時間値が 0.06ppm 以下であること。	中性ョウ化カリウム溶液を用いる吸光光度法 若しくは電量法、紫外線吸収法又はエチレン を用いる化学発光法
二酸化窒素 (昭和53年7月11日)	1 時間値の 1 日平均値が 0.04ppm から 0.06ppm までのゾーン内又は それ以下であること。	ザルツマン試薬を用いる吸光光度法又はオゾ ンを用いる化学発光法
微小粒子状物質 (平成 21 年 9 月 9 日)	1 年平均値が 15 μ g/m³ 以下であ り、かつ、1 日平均値が 35 μ g/m³ 以下であること。	濾過捕集による質量濃度測定方法又はこの方 法によって測定された質量濃度と等価な値が 得られると認められる自動測定機による方法

1-2 大気汚染に係る環境基準の評価方法一覧

	大気汚染に対する施策σ	対果等を判断するなど、年間にわたる測定結果からみて評価を行							
	う場合は以下の方法により長期的評価を行う。								
巨地的歌声	二酸化硫黄、一酸化炭素、浮遊粒子状物質	年間にわたる1時間値の1日平均値のうち、高い方から2%の短囲にあるものを除外した最高値(以下「1日平均値の年間2%」外値」という。)を用いて評価を行う。ただし、1日平均値につき環境基準を超える日が2日以上連続した場合は、このような取りに行わない。							
長期的評価	二酸化窒素	年間にわたる1時間値の1日平均値のうち、低い方から98%目に相当する値(以下「1日平均値の年間98%値」という。)を用いて評価を行う。							
	微小粒子状物質	1年間に測定された全ての1日平均値の平均値を長期基準(1年 平均値)と比較し、評価を行う。 かつ、年間にわたる1日平均値のうち、低い方から98%目に相当 する値を短期基準(1日平均値)と比較し、評価を行う。							
短期的評価	た測定結果により、測定	基準に照らして短期的に評価する場合は、連続して又は随時に行っ 医を行った日又は時間について環境基準の評価を行う。 「永、浮遊粒子状物質、光化学オキシダントが対象。							

¹日平均値の評価にあたっては、1時間値の欠測(異常値を含む。)が1日 (24 時間) の内に 4 時間を超える場合には評価の対象としない。

1-3 大気常時測定局位置図

① 大気常時測定局位置図

② 大気常時測定局の概要一覧

																		(4	令和6年度)	
	_					用	設					測定	項目							
所在地	番号	測	定	局	名	途地域	置年度	SO_2	NOx	SPM	Ox	НС	СО	PM 2.5	温度 湿度	風向風速	日射 放射 収支	設置者	吸引口 高さ(m)	風向風 速高さ (m)
和歌山市	1	清	明	寮	*	住居	S51		0		0					0		市	6.9	10
	2	木	の本社	上宅	*	住居	S42	0		0						0		市	2.4-3.2	5.0
	3	衛	生 研	究	所	住居	S48	0	0	0	0			0		0		市	14-15	22
	4	島	橋 地 区	会 会	館	住居	S45	0		0						0		市	5	10
	5	湊	小	学	校	住居	S42	0		0				0		0		市	3.0-5.5	8.0
	6	市	立 和 歌	山高	校	住居	S54	0	0	0	0			0		0		市	2.9-3.0	4.0
	7	中	之島小	、学	校	住居	S44	0	0	0	0					0		市	3.6	10
	8	新	南小	学	校	準工	S53						0					市	2.0	
	9	環	境衛生研究	こセンタ	z —	住居	S45	0	0	0	0	0			0	0	0	県	16	21
	10	宮	前小	学	校	住居	H24	0		0				0		0		市	2.3-3.6	9.3
	11	明	和中	学	校	住居	S47	0	0	0	0			0		0		市	2.2-3.7	10
	12	小	倉 小	学	校	未	S49	0	0	0	0			0		0		市	3.8-4.3	6.0
紀の川市	13	粉	河中部	運動	場	未	H10	0	0	0				0		0		県	3.5	12
橋本市	14	伊	都 総 合	广广	舎	商業	H25	0	0	0				0		0		県	13	18
海南市	15	日	方 小	学	校	商業	S41	0	0	0	0			0		0		県	2.5-3	12.5
	16	加	茂		郷	未	S48	0	0	0	0			0		0		県	3.0	10
有田市	17	有	田市初島	公民	館	住居	S48	0	0	0	0			0		0		県	10	17
湯浅町	18	耐	久	高	校	未	S57	0	0	0						0		県	3.0	25
美浜町	19	美	浜 町	役	場	未	S55	•	•	•						•		町	13	20
御坊市	20	湯	Л		局	住居	S58	•	•	•						•		市	3.0	13.7
	21	藤	田		局	未	S58	•	•	•						•		市	3.0	13.6
	22	野	口		局	未	S58	•	•	•						•		市	3.0	13.8
	23	御	坊 監 視	支	所	住居	S57	0	0	0				0		0		県	7.0	16
	24	塩	屋		局	未	S58	•	•	•								市	3.0	9.4
	25	名	田		局	未	S58	•	•	•						•		市	3.0	13.8
みなべ町	26	晩	稲グラ	ウン	ド	未	H21	0	0	0						0		県	3.0	12
田辺市	27	会	津	公	園	住居	H10	0	0	0				0		0		県	3.0-4.0	12
新宮市	28	新	宮	高	校	住居	H25	0	0	0				0		0		県	3.0	12
			計					26	23	26	10	1	1	14	1	27	1			

※日本製鉄株式会社の寮及び社宅

 SO2:二酸化硫黄
 NOx:窒素酸化物

 HC:炭化水素
 CO:一酸化炭素

 Ox :オキシダント

PM_{2.5}:微小粒子状物質

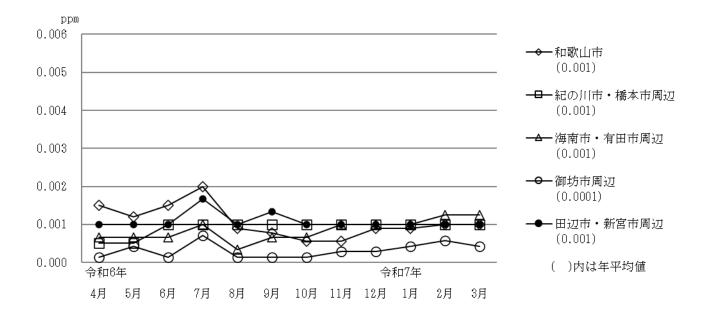
住居:第一種低層住居専用、第二種低層住居専用、第一種中高層住居専用、第二種中高層住居専用、

第一種住居、第二種住居、準住居地域

商業:近隣商業、商業地域 準工:準工業地域 未 :用途地域のない地域

○:テレメーター化項目 ●:非テレメーター化項目

設置年度:測定局を移設しても測定データを継続した場合は、移設前の局の設置年度を記載

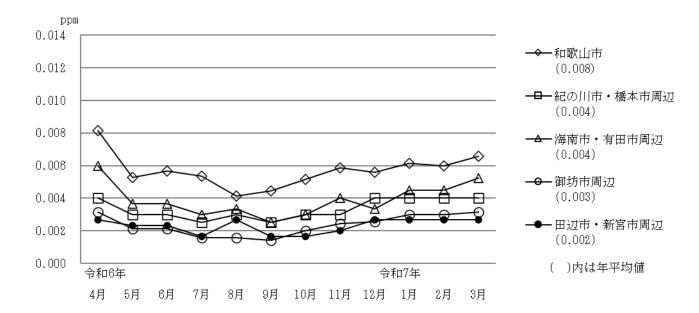

1-4 二酸化硫黄濃度測定結果

① 二酸化硫黄濃度年間測定結果一覧

新子	
日 時間 Ppm 前 % 日 % Ppm Ppm 日 の有無 の適合	長期的評価による環準
3 衛生研究所 363 8674 0.002 0 0 0 0.069 0.007 0 無 適 4 島橋地区会館 363 8672 0.002 0 0 0 0.046 0.007 0 無 適 5 湊小学校 363 8675 0.002 0 0 0 0.032 0.007 0 無 適 6 市立和歌山高校 363 8672 0.000 0 0 0 0.001 0 無 適 7 中之島小学校 363 8665 0.001 0 0 0 0.014 0.003 0 無 適 9 環境衛生研究センター 135 3277 0.002 0 0 0 0.014 0.003 0 無 適 10 宮前小学校 363 8669 0.001 0 0 0 0.002 0 無 適 北京衛市 13 粉河中中部運動場 363 8673 0.001 0 0 0 0.002 0 無 適 <td< td=""><td>の適否</td></td<>	の適否
4 島橋地区会館 363 8672 0.002 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	適
5 湊小学校 363 8675 0.002 0 0 0 0.032 0.007 0 無 適 6 市立和歌山高校 363 8672 0.000 0 0 0 0.009 0.001 0 無 適 7 中之島小学校 363 8665 0.001 0 0 0 0.014 0.003 0 無 適 9 環境衛生研究センター 135 3277 0.002 0 0 0 0.011 0.003 0 無 ※ 10 宮前小学校 365 8700 0.000 0 0 0 0.002 0 無 ※ 11 明和中学校 363 8669 0.001 0 0 0 0.002 0 無 適 紀の川市 13 粉河中部運動場 365 8730 0.001 0 0 0 0.002 0 無 適 福本市 14 伊都総合庁舎 362 8681 0.001 0 0 0 0.008 0.002 0 無 適 海南市 15 日方小学校 360	適
6 市立和歌山高校 363 8672 0.000 0 0 0 0 0.009 0.001 0 無 適 7 中之島小学校 363 8665 0.001 0 0 0 0.014 0.003 0 無 適 9 環境衛生研究センター 135 3277 0.002 0 0 0 0 0.011 0.003 0 無 ※ 10 宮前小学校 365 8700 0.000 0 0 0 0 0.011 0.003 0 無 適 11 明和中学校 363 8669 0.001 0 0 0 0 0.008 0.002 0 無 適 12 小倉小学校 363 8669 0.001 0 0 0 0 0.009 0.002 0 無 適 12 小倉小学校 363 8673 0.000 0 0 0 0 0 0.011 0.001 0 無 適 12 小倉小学校 363 8673 0.000 0 0 0 0 0 0.011 0.001 0 無 適 12 小倉小学校 363 8673 0.000 0 0 0 0 0 0.001 0.001 0 無 適 12 小倉小学校 363 8673 0.000 0 0 0 0 0 0.001 0.001 0 無 適 15 日方小学校 362 8681 0.001 0 0 0 0 0.008 0.002 0 無 適 16 加茂郷 360 8635 0.001 0 0 0 0 0.008 0.002 0 無 適 16 加茂郷 360 8639 0.001 0 0 0 0 0.008 0.002 0 無 適 16 加茂郷 360 8639 0.001 0 0 0 0 0.009 0.002 0 無 適 16 加茂郷 360 8639 0.001 0 0 0 0 0.009 0.002 0 無 適 17 有田市初島公民館 68 1657 0.001 0 0 0 0 0.009 0.002 0 無 適 17 有田市初島公民館 68 1657 0.001 0 0 0 0 0.004 0.002 0 無 適 17 有田市初島公民館 365 8735 0.001 0 0 0 0 0.004 0.002 0 無 適 18 耐久高校 365 8735 0.001 0 0 0 0 0 0.009 0.001 0 無 適 18 耐久高校 361 8664 0.000 0 0 0 0 0.013 0.001 0 無 適 18 耐久高校 361 8664 0.000 0 0 0 0 0.013 0.001 0 無 適 18 適 18 耐久高校 361 8664 0.000 0 0 0 0 0.013 0.001 0 無 適 18 適 18 耐力市 20 湯川局 361 8669 0.000 0 0 0 0 0 0.015 0.001 0 無 適 18 適 18 耐力市 20 湯川局 361 8669 0.000 0 0 0 0 0 0.015 0.001 0 無 適 18 適 18 耐力市 20 湯川局 361 8669 0.000 0 0 0 0 0 0 0.015 0.001 0 無 適 18 適 18 耐力市 20 湯川局 361 8669 0.000 0 0 0 0 0 0 0.015 0.001 0 無 適 18 適 18 耐力市 20 湯川局 361 8669 0.000 0 0 0 0 0 0 0.015 0.001 0 無 適 18 適 18 耐力市 20 湯川局 361 8669 0.000 0 0 0 0 0 0 0.015 0.001 0 無 適 18 適 18 耐力市 20 湯川局 361 8669 0.000 0 0 0 0 0 0 0.015 0.001 0 無 適 18 適 18 耐力 20 湯川局 361 8669 0.000 0 0 0 0 0 0 0.015 0.001 0 無 適 18 適 18 耐力 20 湯川局 361 8669 0.000 0 0 0 0 0 0 0 0.015 0.001 0 無 適 18 適 18 耐力 20 湯川局 361 8669 0.000 0 0 0 0 0 0 0.015 0.001 0 無 適 18 適 18 耐力 20 湯川局 361 8669 0.000 0 0 0 0 0 0 0 0.015 0.001 0 無 18 適 18 耐力 20 湯川局 361 8669 0.000 0 0 0 0 0 0 0 0.015 0.001 0 無 18 適 18 耐力 20 湯川局 361 8669 0.000 0 0 0 0 0 0 0 0 0 0 0.015 0.001 0 無 18 適 18 耐力 20 湯川局 361 8669 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	適
7 中之島小学校 363 8665 0.001 0 0 0 0 0.014 0.003 0 無 9 環境衛生研究センター 135 3277 0.002 0 0 0 0 0.011 0.003 0 無 ※ 10 宮前小学校 365 8700 0.000 0 0 0 0 0 0.008 0.002 0 無 適 11 明和中学校 363 8669 0.001 0 0 0 0 0.009 0.002 0 無 適 12 小倉小学校 363 8673 0.000 0 0 0 0 0.001 0 0 0 0 0.001 0 0 0 0	適
9 環境衛生研究センター 135 3277 0.002 0 0 0 0.011 0.003 0 無 ※ 10 宮前小学校 365 8700 0.000 0 0 0 0 0.002 0 無 適 11 明和中学校 363 8669 0.001 0 0 0 0.009 0.002 0 無 適 紀の川市 13 粉河中部運動場 365 8730 0.001 0 0 0 0.001 0 0 0.001 0 0 0 0.002 0 無 適 紀の川市 13 粉河中部運動場 365 8730 0.001 0 0 0 0.008 0.002 0 無 適 福本市 14 伊都総合庁舎 362 8681 0.001 0 0 0 0.008 0.002 0 無 適 海南市 15 日方小学校 360 8635 0.001 0 0 0 0.002 0 無 適 有田市 17 有田市初島公民館 68 1657 0.001 0	適
10 宮前小学校 365 8700 0.000 0 0 0 0.008 0.002 0 無 適 11 明和中学校 363 8669 0.001 0 0 0 0 0.009 0.002 0 無 適 12 小倉小学校 363 8673 0.000 0 0 0 0 0 0.011 0.001 0 無 適 12 小倉小学校 365 8730 0.001 0 0 0 0 0 0.008 0.002 0 無 適 13 粉河中部運動場 365 8730 0.001 0 0 0 0 0.008 0.002 0 無 適 14 伊都総合庁舎 362 8681 0.001 0 0 0 0 0.008 0.002 0 無 適 15 日方小学校 360 8635 0.001 0 0 0 0 0.030 0.002 0 無 適 16 加茂郷 360 8639 0.001 0 0 0 0 0.009 0.002 0 無 適 17 有田市初島公民館 68 1657 0.001 0 0 0 0 0.004 0.002 0 無 適 美浜町 18 耐久高校 365 8735 0.001 0 0 0 0 0.013 0.001 0 無 適 19 美浜町役場 361 8664 0.000 0 0 0 0.013 0.001 0 無 適 16 16 16 17 18 18 19 19 19 19 19 19	適
11 明和中学校 363 8669 0.001 0 0 0 0.009 0.002 0 無 適 12 小倉小学校 363 8673 0.000 0 0 0 0 0.011 0.001 0 無 適 2 小倉小学校 363 8673 0.001 0 0 0 0 0.008 0.002 0 無 適 13 粉河中部運動場 365 8730 0.001 0 0 0 0 0.008 0.002 0 無 適 14 伊都総合庁舎 362 8681 0.001 0 0 0 0 0.008 0.002 0 無 適 16 加茂郷 360 8635 0.001 0 0 0 0 0.009 0.002 0 無 適 16 加茂郷 360 8639 0.001 0 0 0 0 0.009 0.002 0 無 適 18 耐久高校 365 8735 0.001 0 0 0 0 0.001 0 0 0 0.001 0 無 適 美浜町 19 美浜町役場 361 8664 0.000 0 0 0 0.001 0 0 0 0.001 0 無 適 19 19 19 19 19 19 19	*
12 小倉小学校 363 8673 0.000 0 0 0 0.011 0.001 0 無 適 紀の川市 13 粉河中部運動場 365 8730 0.001 0 0 0 0 0.008 0.002 0 無 適 適 極本市 14 伊都総合庁舎 362 8681 0.001 0 0 0 0 0.008 0.002 0 無 適 海南市 15 日方小学校 360 8635 0.001 0 0 0 0 0.030 0.002 0 無 適 適 16 加茂郷 360 8639 0.001 0 0 0 0 0.009 0.002 0 無 適 適 有田市 17 有田市初島公民館 68 1657 0.001 0 0 0 0 0.004 0.002 0 無 適 美浜町 18 耐久高校 365 8735 0.001 0 0 0 0 0.009 0.001 0 無 適 美浜町 19 美浜町役場 361 8664 0.000 0 0 0 0 0.013 0.001 0 無 適 適 14 再日局 362 8672 0.000 0 0 0 0 0.015 0.001 0 無 適 適	適
記の川市 13 粉河中部運動場 365 8730 0.001 0 0 0 0 0.008 0.002 0 無 適 橋本市 14 伊都総合庁舎 362 8681 0.001 0 0 0 0 0.008 0.002 0 無 適 海南市 15 日方小学校 360 8635 0.001 0 0 0 0 0.030 0.002 0 無 適 16 加茂郷 360 8639 0.001 0 0 0 0 0.009 0.002 0 無 適 適 17 有田市初島公民館 68 1657 0.001 0 0 0 0 0.004 0.002 0 無 適 ※ 湯浅町 18 耐久高校 365 8735 0.001 0 0 0 0 0.013 0.001 0 無 適 美浜町 19 美浜町役場 361 8664 0.000 0 0 0 0 0.013 0.001 0 無 適 適 1 再目 362 8672 0.000 0 0 0 0 0.015 0.001 0 無 適 適	適
橋本市 14 伊都総合庁舎 362 8681 0.001 0 0 0 0 0.008 0.002 0 無 適 海南市 15 日方小学校 360 8635 0.001 0 0 0 0 0.030 0.002 0 無 適 16 加茂郷 360 8639 0.001 0 0 0 0 0.009 0.002 0 無 適 有田市 17 有田市初島公民館 68 1657 0.001 0 0 0 0 0.004 0.002 0 無 淺 湯浅町 18 耐久高校 365 8735 0.001 0 0 0 0 0.013 0.001 0 無 適 美浜町 19 美浜町役場 361 8664 0.000 0 0 0 0 0.009 0.001 0 無 適 御坊市 20 湯川局 361 8669 0.000 0 0 0 0 0.013 0.001 0 無 適 21 藤田局 362 8672 0.000 0 0 0 0 0.015 0.001 0 無 適	適
海南市 15 日方小学校 360 8635 0.001 0 0 0 0.030 0.002 0 無 適 有田市 16 加茂郷 360 8639 0.001 0 0 0 0.009 0.002 0 無 適 有田市 17 有田市初島公民館 68 1657 0.001 0 0 0 0.004 0.002 0 無 ※ 湯浅町 18 耐久高校 365 8735 0.001 0 0 0 0.013 0.001 0 無 適 美浜町 19 美浜町役場 361 8664 0.000 0 0 0 0.009 0.001 0 無 適 御坊市 20 湯川局 361 8669 0.000 0 0 0 0.013 0.001 0 無 適 21 藤田局 362 8672 0.000 0 0 0 0.015 0.001 0 無 適	適
16 加茂郷 360 8639 0.001 0 0 0 0.009 0.002 0 無 適 有田市 17 有田市初島公民館 68 1657 0.001 0 0 0 0.004 0.002 0 無 ※ 湯浅町 18 耐久高校 365 8735 0.001 0 0 0 0.013 0.001 0 無 適 美浜町 19 美浜町役場 361 8664 0.000 0 0 0 0.009 0.001 0 無 適 御坊市 20 湯川局 361 8669 0.000 0 0 0 0.013 0.001 0 無 適 21 藤田局 362 8672 0.000 0 0 0 0.015 0.001 0 無 適	適
有田市 17 有田市初島公民館 68 1657 0.001 0 0 0 0.004 0.002 0 無 ※ 湯浅町 18 耐久高校 365 8735 0.001 0 0 0 0.013 0.001 0 無 適 美浜町 19 美浜町役場 361 8664 0.000 0 0 0 0.009 0.001 0 無 適 御坊市 20 湯川局 361 8669 0.000 0 0 0 0.013 0.001 0 無 適 21 藤田局 362 8672 0.000 0 0 0 0 0.015 0.001 0 無 適	適
湯浅町 18 耐久高校 365 8735 0.001 0 0 0 0.013 0.001 0 無 適 美浜町 19 美浜町役場 361 8664 0.000 0 0 0 0.009 0.001 0 無 適 御坊市 20 湯川局 361 8669 0.000 0 0 0 0.013 0.001 0 無 適 21 藤田局 362 8672 0.000 0 0 0 0.015 0.001 0 無 適	適
美浜町 19 美浜町役場 361 8664 0.000 0 0 0 0.009 0.001 0 無 適 御坊市 20 湯川局 361 8669 0.000 0 0 0 0.013 0.001 0 無 適 21 藤田局 362 8672 0.000 0 0 0 0.015 0.001 0 無 適	*
御坊市 20 湯川局 361 8669 0.000 0 0 0 0 0.013 0.001 0 無 適 21 藤田局 362 8672 0.000 0 0 0 0 0.015 0.001 0 無 適	適
21 藤田局 362 8672 0.000 0 0 0 0.015 0.001 0 無 適	適
	適
	適
22 野口局 359 8628 0.000 0 0 0 0.010 0.001 0 無 適	適
23 御坊監視支所 365 8733 0.001 0 0 0 0.006 0.002 0 無 適	適
24 塩屋局 362 8675 0.000 0 0 0 0.011 0.001 0 無 適	適
25 名田局 360 8647 0.000 0 0 0 0.008 0.001 0 無 適	適
みなべ町 26 晩稲グラウンド 309 7409 0.001 0 0 0 0 0.012 0.002 0 無 適	適
田辺市 27 会津公園 364 8732 0.001 0 0 0 0.013 0.002 0 無 適	適
新宮市 28 新宮高校 365 8730 0.001 0 0 0 0 0.009 0.002 0 無 適	適

[※] 環境衛生研究センター、有田市初島公民館は測定時間が6,000時間に満たないため、環境基準の評価の対象外

② 二酸化硫黄濃度地域別月平均値変化図


1-5 二酸化窒素濃度測定結果

① 二酸化窒素濃度年間測定結果一覧

所在地	番号	測定局	有効測 定日数	測定時間	1年平均 値 ppm	1時間値の最高値	0.04pp 0.06pp の日数	1日平均値が 0.04ppm以上 0.06ppm以下 の日数とその 割合		均値が omを超 数とそ N合	1日平均 値の年間 98%値	1日平均値 の年間 98%値が 0.06ppmを 超えた日 数	環境基準 (長期的評 価)の適否
			目	時間	ppm	ppm	目	%	目	%	ppm	B	
和歌山市	1	清明寮	359	8601	0.006	0.035	0	0	0	0	0. 011	0	適
	3	衛生研究所	273	6541	0.007	0.048	0	0	0	0	0.015	0	適
	6	市立和歌山高校	362	8661	0.006	0.038	0	0	0	0	0. 012	0	適
	7	中之島小学校	361	8661	0.006	0.038	0	0	0	0	0.014	0	適
	9	環境衛生研究センター	358	8585	0.007	0.047	0	0	0	0	0.014	0	適
	11	明和中学校	355	8582	0.005	0.041	0	0	0	0	0. 012	0	適
	12	小倉小学校	361	8634	0.005	0.033	0	0	0	0	0.009	0	適
紀の川市	13	粉河中部運動場	365	8734	0.003	0.025	0	0	0	0	0.007	0	適
橋本市	14	伊都総合庁舎	364	8730	0.003	0.019	0	0	0	0	0.006	0	適
海南市	15	日方小学校	98	2353	0.005	0.031	0	0	0	0	0.015	0	*
	16	加茂郷	359	8639	0.004	0.030	0	0	0	0	0.010	0	適
有田市	17	有田市初島公民館	170	4280	0.005	0.043	0	0	0	0	0.012	0	*
湯浅町	18	耐久高校	365	8729	0.004	0.043	0	0	0	0	0.008	0	適
美浜町	19	美浜町役場	362	8674	0.002	0.015	0	0	0	0	0.005	0	適
御坊市	20	湯川局	362	8665	0.002	0.017	0	0	0	0	0.005	0	適
	21	藤田局	362	8660	0.002	0.019	0	0	0	0	0.005	0	適
	22	野口局	359	8623	0.002	0.018	0	0	0	0	0.006	0	適
	23	御坊監視支所	365	8732	0.003	0.045	0	0	0	0	0.006	0	適
	24	塩屋局	363	8671	0.002	0.023	0	0	0	0	0.005	0	適
	25	名田局	361	8652	0.002	0.018	0	0	0	0	0.004	0	適
みなべ町	26	晩稲グラウンド	352	8437	0.002	0.015	0	0	0	0	0.004	0	適
田辺市	27	会津公園	364	8731	0.003	0.024	0	0	0	0	0.006	0	適
新宮市	28	新宮高校	314	7545	0.002	0.015	0	0	0	0	0.003	0	適

[※] 日方小学校、有田市初島公民館は測定時間が6,000時間に満たないため、環境基準の評価の対象外

② 二酸化窒素濃度地域別月平均値変化図

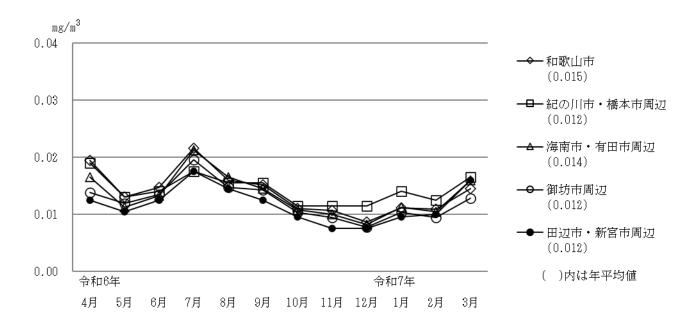


1-6 一酸化炭素濃度測定結果

① 一酸化炭素濃度年間測定結果一覧

所在地	番号	測定局	有効測 定日数	測定時間	1年平均	8時間 ⁻ が20pp えた回 の害	omを超 数とそ	1日平 ² 10ppm: た日数 割	とその	1時間値の最高値	1日平均 値の年間 2%除外 値	1日平均 値の年間 2%除外 値が 10ppmを 超えた日 数	1日平均値 が10ppmを 超えた日が 2日以上連 続したこと の有無	短期的評 価による 環境基準 の適否	長期的評 価による 環境基準 の適否
			日	時間	ppm	回	%	日	%	ppm	ppm	目	- 17.711		
和歌山市	8	新南小学校	364	8695	0.2	0	0	0	0	1.4	0.3	0	無	適	適

② 一酸化炭素濃度地域別月平均値変化図

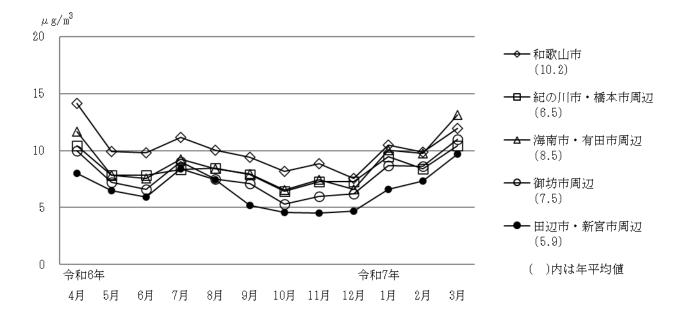

1-7 浮遊粒子状物質濃度測定結果

① 浮遊粒子状物質濃度年間測定結果一覧

所在地	番号	測定局名	有 測 日	測時間	1年平均 値 mg/m ³	0.20m 超えた	引値が g/m³を 時間数 の割合	1日平: 0.10mg 超え7 とその	g/m³を	1時間値 の最高値 mg/m ³	1日平均 値の2% 除外値 mg/m ³	1日平均 値年間 2%除外 値が 0.10mg/ m³を超 えた数	1日平均 値が 0.10mg/ m³をた日 えび2日 が2日 としたの 無	短期にま境の	長期的 評価に環 境基準 の適
和歌山市	2	木の本社宅	363	8710	0. 013	0	0	0	0	0. 116	0.034	0	無	適	適
	3	衛生研究所	362	8690	0. 014	0	0	0	0	0. 130	0. 033	0	無	適	適
	4	島橋地区会館	359	8607	0. 014	0	0	0	0	0. 121	0. 036	0	無	適	適
	5	湊小学校	363	8704	0. 015	0	0	1	0.3	0. 160	0. 038	0	無	適	適
	6	市立和歌山高校	362	8669	0.012	0	0	0	0	0.084	0.029	0	無	適	適
	7	中之島小学校	363	8666	0. 013	0	0	0	0	0. 136	0.029	0	無	適	適
	9	環境衛生研究センター	341	8279	0. 017	0	0	1	0.3	0. 172	0.048	0	無	適	適
	10	宮前小学校	360	8652	0. 016	0	0	1	0.3	0. 161	0. 035	0	無	適	適
	11	明和中学校	359	8678	0.013	0	0	1	0.3	0. 140	0.037	0	無	適	適
	12	小倉小学校	363	8682	0.011	0	0	0	0	0. 082	0.027	0	無	適	適
紀の川市	13	粉河中部運動場	363	8718	0.014	0	0	0	0	0. 141	0.037	0	無	適	適
橋本市	14	伊都総合庁舎	362	8686	0.015	0	0	0	0	0. 140	0.037	0	無	適	適
海南市	15	日方小学校	358	8615	0.013	0	0	0	0	0. 111	0.032	0	無	適	適
	16	加茂郷	351	8544	0.013	0	0	0	0	0. 121	0.031	0	無	適	適
有田市	17	有田市初島公民館	324	7829	0.013	0	0	0	0	0. 128	0.034	0	無	適	適
湯浅町	18	耐久高校	363	8714	0.015	0	0	0	0	0. 156	0.041	0	無	適	適
美浜町	19	美浜町役場	365	8737	0.012	0	0	0	0	0.092	0.028	0	無	適	適
御坊市	20	湯川局	364	8736	0.012	0	0	0	0	0.074	0.027	0	無	適	適
	21	藤田局	365	8735	0.012	0	0	0	0	0.080	0.028	0	無	適	適
	22	野口局	331	7969	0.012	0	0	0	0	0.076	0.028	0	無	適	適
	23	御坊監視支所	363	8719	0.014	0	0	0	0	0. 135	0.040	0	無	適	適
	24	塩屋局	365	8732	0.012	0	0	0	0	0.081	0.030	0	無	適	適
	25	名田局	364	8726	0.012	0	0	0	0	0.092	0.031	0	無	適	適
みなべ町	26	晩稲グラウンド	-	ı	-	-	-	-	-	-	ı	-	-	-	_
田辺市	27	会津公園	361	8698	0. 013	0	0	0	0	0. 136	0.036	0	無	適	適
新宮市	28	新宮高校	363	8715	0.010	0	0	0	0	0.103	0.030	0	無	適	適

※ 晩稲グラウンドは測定時間が6,000時間に満たないため、環境基準の評価の対象外

② 浮遊粒子状物質濃度地域別月平均値変化図



1-8 微小粒子状物質濃度測定結果

① 微小粒子状物質濃度年間測定結果一覧

所在地	番号	測定局	有効測定 日数	1年平均	割	目数とその 合	1日平均値の 最高値	1日平均値の 年間98%値	短期基準 による環 境基準の 適否	長期基準 による環 境基準の 適否	環境基準 (長期的評 価)の適否
			目	$\mu \text{ g/m}^3$	目	%	μ g/m ³	μ g/m ³			
和歌山市	3	衛生研究所	328	11. 2	1	0.3	61.3	25. 4	適	適	適
	5	湊小学校	363	10.3	1	0.3	59. 3	24. 0	適	適	適
	6	市立和歌山高校	314	10.9	1	0.3	56.8	25. 8	適	適	適
	10	宮前小学校	360	9. 4	1	0.3	54. 7	22. 0	適	適	適
	11	明和中学校	359	9. 7	1	0.3	57. 5	21.8	適	適	適
	12	小倉小学校	363	9. 7	1	0.3	55. 0	23. 5	適	適	適
紀の川市	13	粉河中部運動場	363	8. 4	1	0.3	44. 1	20.3	適	適	適
橋本市	14	伊都総合庁舎	362	8.3	1	0.3	49.8	21.5	適	適	適
海南市	15	日方小学校	358	9. 4	1	0.3	48. 4	22. 9	適	適	適
	16	加茂郷	355	8. 2	1	0.3	56. 5	19. 2	適	適	適
有田市	17	有田市初島公民館	326	8.3	1	0.3	59. 9	21.6	適	適	適
御坊市	23	御坊監視支所	360	7.8	1	0.3	47. 4	18. 9	適	適	適
田辺市	27	会津公園	361	7. 5	0	0	33. 2	18. 2	適	適	適
新宮市	28	新宮高校	363	5. 7	1	0.3	35. 9	16. 6	適	適	適

② 微小粒子状物質濃度地域別月平均値変化図

1-9 光化学オキシダント濃度年間測定結果一覧

			昼間	昼間	昼間の	昼間の16	時間値が	昼間の11	時間値が	昼間の	昼間の日最高
- de tal	番	700 -1-	測定	測定	1時間値の	0.06ppm	を超えた	0.12ppi	m以上の	1時間値の	1時間値の
所在地	号	測定局	日数	時間	年平均値	日数と	時間数	日数と	時間数	最高値	年平均値
			日	時間	ррт	日	時間	Ħ	時間	ррт	ррт
和歌山市	1	清明寮	354	4758	0.034	48	219	0	0	0.086	0. 046
	3	衛生研究所	365	5466	0.034	55	223	0	0	0.087	0.046
	6	市立和歌山高校	365	5463	0.034	51	253	0	0	0.088	0.047
	7	中之島小学校	365	5466	0.034	51	267	0	0	0.088	0.046
	9	環境衛生研究センター	144	2127	0.04	30	148	0	0	0.09	0. 052
	11	明和中学校	365	5464	0.036	69	345	0	0	0.094	0.049
	12	小倉小学校	365	5453	0.034	74	357	0	0	0.096	0. 048
海南市	15	日方小学校	362	5405	0.037	75	349	0	0	0.091	0. 049
	16	加茂郷	362	5404	0.037	74	350	0	0	0.091	0.049
有田市	17	有田市初島公民館	264	3906	0.039	71	352	0	0	0.09	0. 05

1-10 光化学オキシダントの生成防止のための大気中炭化水素濃度の指針

(昭和51年8月17日環境庁大気保全局長通知)

物	質	非メタン炭化水素
指	指針	光化学オキシダントの日最高 1 時間値 0.06ppm に対応する午前 6 時から 9 時までの
1日	亚	非メタン炭化水素の3時間平均値は、0.20ppmCから0.31ppmCの範囲にあること。

1-11 非メタン炭化水素濃度年間測定結果一覧

	番		測定時間	年平均値 にお	6~9時 における	6~9時	6~9時3時間平均値		6~9時3時間平均 値が0.20ppmCを超え		6~9時3時間平均 値が0.31ppmCを超え	
所在地	号	測定局			年平均値	測定日数	最高値	最低值	た日数とその割合		た日数とその割合	
			時間	ppmC	рртС	日	ppmC	ppmC	日	%	Ħ	%
和歌山市	9	環境衛生研究センター	3168	0.1	0.1	133	0.4	0.01	4	3	1	0.8

1-12 炭化水素メタン濃度年間測定結果一覧

			炭化水素メタン							
所在地	番			F = 4 /*	6~9時	6~9時	6~9時3時間平均値			
	号	測定局	測定時間	年平均値	における 年平均値	測定日数	最高値	最低值		
			時間	ppmC	ppmC	日	ppmC	ppmC		
和歌山市	9	環境衛生研究センター	3168	2. 02	2. 0	133	2.09	1. 91		

1-13 有害大気汚染物質環境基準及び指針値一覧

① 有害大気汚染物質 (ベンゼン等) に係る環境基準一覧

物質 (告示年月日)	環境上の条件	測定方法
ベンゼン (平成9年2月4日)	1年平均値が 0.003 mg/m³以下 であること。	キャニスター若しくは捕集管により採取 した試料をガスクロマトグラフ質量分析 計により測定する方法又はこれと同等以
トリクロロエチレン (平成9年2月4日)	1 年平均値が 0.13 mg/m³以下 であること。	上の性能を有すると認められる方法。
テトラクロロエチレン (平成 30 年 11 月 19 日)	1年平均値が 0.2 mg/m³以下で あること。	
ジクロロメタン (平成 13 年 4 月 20 日)	1 年平均値が 0.15 mg/m³以下 であること。	

② 環境中の有害大気汚染物質による健康リスクの低減を図るための指針となる数値(指針値)

物質	指針値
アクリロニトリル	年平均値 2 μg/m³以下
塩化ビニルモノマー	年平均値 10 μg/m³以下
水銀	年平均値 0.04 μg Hg/m³以下
ニッケル化合物	年平均値 0.025 μg Ni/m³以下
クロロホルム	年平均値 18 μg/m³以下
1,2-ジクロロエタン	年平均値 1.6 μg/m³以下
1,3-ブタジエン	年平均値 2.5 μg/m³以下
ヒ素及び無機ヒ素化合物	年平均値 0.006 μg As/m³以下
マンガン及び無機マンガン化合物	年平均値 0.14 μg Mn/m³以下
塩化メチル	年平均値 94 μg/m³以下
アセトアルデヒド	年平均値 120 μ g/m3 以下

1-14 有害大気汚染物質測定結果一覧

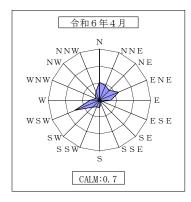
	物質名	測定	1年	平均値 (μg/	$/\mathrm{m}^3$)	環境基準 又は	適否
	100 貝 石	回数	海南市	有田市	岩出市	指針値	旭口
	アクリロニトリル	12	0.021	0.0180	0.066	2	適
	塩化ビニルモノマー	12	0.0045	0.0041	0.0041	10	適
	クロロホルム	12	0.10	0.090	0.10	18	適
	1, 2-ジクロロエタン	12	0.12	0.12	0.11	1.6	適
	ジクロロメタン	12	1.0	0.80	1. 1	150	適
在水叶子	テトラクロロエチレン	12	0.060	0.050	0.070	200	適
揮発性有 機化合物	トリクロロエチレン	12	0.040	0.040	0.060	130	適
100,100,100	1, 3-ブタジエン	12	0. 238	0.012	0.031	2. 5	適
	塩化メチル	12	1.4	1.4	1.4	94	適
	トルエン	12	2. 1	2.3	8.5	_	_
	ベンゼン	12	0.49	0.7	0.63	3	適
	アセトアルデヒド	12	1.0	1.0	1. 25	120	適
	ホルムアルデヒド	12	1.6	1.6	2. 1	_	_
	ニッケル化合物	12	0.0026	0.00300	0.0022	0.025	適
	ヒ素及びその化合物	12	0.00140	1	-	0.006	適
金属類	ベリリウム及びその化合物	12	0.000033	1	-	_	_
业府坝	マンガン及びその化合物	12	0.024	-	-	0.14	適
	クロム及びその化合物	12	0.0080	ı	-	_	_
	水銀及びその化合物	12	0.0016	0.0011	0.0012	0.04	適
炭化水素	酸化エチレン	12	0.049	-	_	_	_
灰山小糸	ベンゾ [a] ピレン	12	0.00012	0.00015	0.000130	_	_

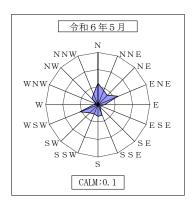
1-15 発生源常時監視局

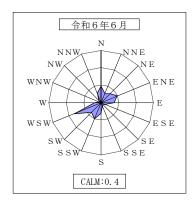
士友	車 光 玩 夕		監視	項目
市名	事業所名		SOx	NOx
		第 4 焼 結 炉	0	0
	日本製鉄㈱和歌山製鉄所	第 5 焼 結 炉	0	0
		その他小規模発生源	0	\circ
和歌山市		1号発電ボイラー	0	0
	和歌山共同火力㈱	2号発電ボイラー	0	0
		3号発電ボイラー	0	0
	花 王 ㈱ 和 歌 山 工 場	発電ボイラー	0	0
海克士	FNEOC 和歌山子油蜂制州海南丁相	1 2 0 m 煙 突	0	0
海南市	ENEOS 和歌山石油精製㈱海南工場	7 0 m 煙 突	0	0
		A筒集合煙突	0	0
* m#		B筒集合煙突	0	0
有田市	ENEOS㈱和歌山製造所	C 筒集合煙突	0	0
		総量	0	0
		1号発電ボイラー	0	0
後日上十二十二		2号発電ボイラー	0	0
御坊市	関西電力㈱御坊発電所	3号発電ボイラー	0	0
		総量	0	0

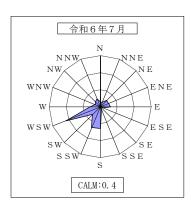
1-16 特定粉じん (アスベスト) 排出等作業現場での大気中アスベスト濃度 (総繊維数) 測定結果

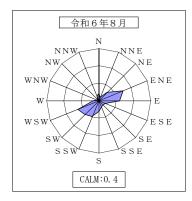
	解体等作業を行った場所	測定日	敷地境界濃度値(本/リットル)	作業の種類	種類
1	有田市	令和6年6月4日	<0.056	建築物の解体	吹付け石綿
2	海南市	令和6年6月6日	<0.056	建築物の改造・補修	吹付け石綿
3	串本町	令和6年9月4日	<0.056	工作物の改造・補修	吹付け石綿
4	有田市	令和6年9月11日	<0.056	建築物の解体	吹付け石綿
5	上富田町	令和7年1月17日	<0.056	建築物の解体	煙突用断熱材
6	海南市	令和7年2月18日	<0.11	建築物の解体(作業前)	吹付け石綿

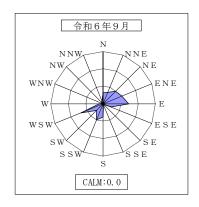

1-17 風向頻度、平均風速及び風配図

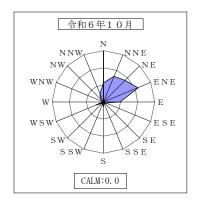

① 風向頻度と平均風速

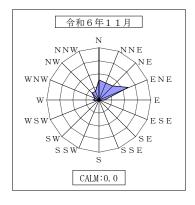

令和6年度 測定場所:和歌山地方気象台 単位:%

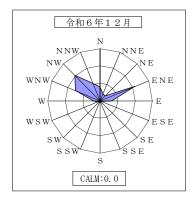

月	6年									7年		
風向	4	5	6	7	8	9	10	11	12	1	2	3
N	10.6	12.2	9.3	2.8	4.2	6.3	11.2	15.2	7.8	7.4	7.5	16.2
NNE	9.2	9.0	5.4	2.8	2.0	7.1	16.1	13.9	4.2	5.8	4.9	11.8
ΝE	8.1	7.4	7.2	5.2	6.7	10.1	18.0	14.9	4.0	8.2	5.1	10.5
ENE	12.1	12.6	9.9	5.4	15.1	11.4	21.8	24.5	21.5	21.5	15.1	15.9
Е	6.7	3.9	7.4	6.2	11.8	14.4	9.5	4.6	6.6	5.9	4.8	6.5
ESE	2.1	1.7	2.6	2.3	4.2	5.1	1.9	1.7	0.8	0.5	1.0	2.2
SE	1.3	1.7	1.8	0.4	3.5	0.8	1.6	0.6	0.5	0.4	0.1	0.8
SSE	2.6	6.6	1.7	1.7	3.9	0.7	0.8	0.4	0.0	0.3	0.1	1.3
S	4.4	6.7	6.3	12.9	6.3	7.6	2.6	0.6	0.1	0.0	0.7	3.8
SSW	4.4	5.6	10.3	13.2	9.8	10.3	1.7	0.1	0.8	0.1	0.7	2.7
SW	6.1	6.6	8.1	6.6	11.0	5.6	1.2	0.0	0.8	0.5	0.4	1.9
WSW	15.6	11.0	16.8	21.9	13.0	14.0	4.7	2.5	2.2	4.3	3.9	5.1
W	5.6	2.4	3.8	6.0	3.4	2.5	0.5	4.3	3.9	7.3	4.2	2.6
WNW	2.2	1.2	1.1	3.1	0.9	0.7	0.7	2.9	15.6	14.5	18.2	4.6
NW	3.2	4.6	2.1	4.2	0.9	1.3	2.6	7.2	20.4	17.9	21.5	5.7
NNW	5.3	6.5	6.0	4.8	2.8	2.1	5.1	6.7	10.8	5.4	11.8	8.6
CALM	0.7	0.1	0.4	0.4	0.4	0.0	0.0	0.0	0.0	0.0	0.1	0.1
平均風速 (m/sec)	3.1	4.2	3.6	3.6	3.4	3.6	3.1	3.9	4.2	4.1	4.3	3.8

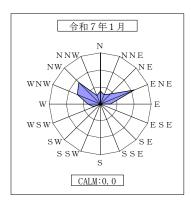

② 風配図

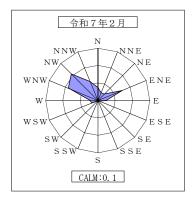


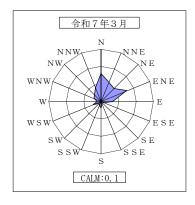












1-18 光化学オキシダント (スモッグ) 発令状況

① 令和6年度光化学オキシダント(スモッグ)発令状況

	発令日	発令区分	発令地域	発令時刻	解除時刻	測定局	発令濃度 (ppm)
1号	9月9日	予報	С	14:20	16:20	有田市 初島公民館	0.113
2号	9月25日	予報	С	14:20	日没解除 (19:20)	有田市 初島公民館	0.101
3号	9月26日	予報	С	13:20	17:20	有田市 初島公民館	0.101

【備考】

〇 発令地域

C地域:海南市下津町の地域及び有田市

- 〇 発令基準
 - [予報] オキシダント濃度の1時間値が、同一地域内の1以上の測定局で0.10ppm以上になり、かつ 気象条件などから大気の汚染状況が継続すると認められるとき。
 - [注意報] オキシダント濃度の1時間値が、同一地域内の2以上の測定局で0.12ppm以上になり、かつ 気象条件などから大気の汚染状況が継続すると認められるとき。
 - [警報] オキシダント濃度の1時間値が、同一地域内の2以上の測定局で0.30ppm以上になり、かつ 気象条件などから大気の汚染状況が継続すると認められるとき。
 - [重大緊急警報]オキシダント濃度の1時間値が、同一地域内の2以上の測定局で0.40ppm以上になり、 かつ気象条件などから大気の汚染状況が継続すると認められるとき。

② 光化学オキシダント (スモッグ) 発令及び被害届出人数の推移

年度	予報(回数)	注意報(回数)	被害(人)
昭和48	30	1	84
49	29	1	7
50	25	0	4
51	22	0	16
52	21	0	0
53	6	0	0
54	6	0	0
55	1	0	0
56	4	0	0
57	7	0	1
58	5	0	0
59	10	0	0
60	4	0	0
61	7	0	0
62	9	1	0
63	3	0	0
平成元	2	0	0
2	6	1	0
3	0	0	0
4	0	0	0
5	4	0	0
6	6	1	0
7	3	1	0
8	5	1	0
9	5	1	0
10	2	1	0
11	4	0	0
12	11	2	0
13	7	1	0
14	2	1	0
15	4	0	0
16	7	0	0
17	1	0	0
18	6	1	0
19	7	1	0
20	3	1	0
21	2	0	0
22	3	0	0
23	0	0	0
24	3	0	0
25	8	0	0
26	2	1	0
27	8	0	0
28	4	0	0
29	2	0	0
30	1	0	0
令和元	1	1	0
令和2	0	0	0
令和3	1	0	0
令和4	2	0	0
令和5	1	0	0

2 水環境関係

2-1 公共用水域における水質汚濁に係る環境基準等一覧

① 人の健康の保護に関する環境基準(健康項目)

項目	基準値	項目	基準値
カドミウム	0.003mg/L 以下	1,1,2-トリクロロエタン	0.006mg/L 以下
全シアン	検出されないこと。	トリクロロエチレン	0.01mg/L 以下
鉛	0.01mg/L 以下	テトラクロロエチレン	0.01mg/L 以下
六価クロム	0.02mg/L 以下	1, 3-ジクロロプロペン	0.002mg/L 以下
砒素	0.01mg/L 以下	チウラム	0.006mg/L 以下
総水銀	0.0005mg/L 以下	シマジン	0.003mg/L 以下
アルキル水銀	検出されないこと。	チオベンカルブ	0.02mg/L 以下
РСВ	検出されないこと。	ベンゼン	0.01mg/L 以下
ジクロロメタン	0.02mg/L 以下	セレン	0.01mg/L 以下
四塩化炭素	0.002mg/L 以下	硝酸性窒素及び亜硝酸性窒素	10mg/L 以下
1,2-ジクロロエタン	0.004mg/L 以下	ふっ素	0.8mg/L 以下
1,1-ジクロロエチレン	0.1mg/L 以下	ほう素	1mg/L 以下
シス-1, 2-ジクロロエチレン	0.04mg/L 以下	1,4-ジオキサン	0.05mg/L 以下
1, 1, 1-トリクロロエタン	1 mg/L 以下	_	

注1 全公共用水域が対象

- 2 基準値は年間平均値。ただし、全シアンに係る基準値については、最高値。
- 3 海域については、ふっ素及びほう素の基準値は適用しない。

② 生活環境の保全に関する基準

ア 河川 (湖沼を除く)

BOD等に係る利用目的別類型

項目				基準値		
類型	利用目的の適応性	水素イオン濃度 (pH)	生物化学的 酸素要求量 (BOD)	浮遊物質量 (SS)	溶存酸素量 (DO)	大腸菌数
AA	水 道 1 級 自然環境保全 及びA以下の欄に掲 げるもの	6.5以上8.5以 下	1 mg/L 以下	25mg/L 以下	7.5mg/L 以上	20CFU/100mL以下
А	水 道 2 級 水 産 1 級 水 浴 及びB以下の欄に掲 げるもの	6.5以上8.5以 下	2 mg/L 以下	25mg/L 以下	7.5mg/L 以上	300CFU/100mL 以下
В	水 道 3 級 水 産 2 級 及びC以下の欄に掲 げるもの	6.5以上8.5以下	3mg/L 以下	25mg/L 以下	5 mg/L 以上	1,000CFU/100mL 以下
С	水 産 3 級 工業用水1級 及びD以下の欄に掲 げるもの	6.5以上8.5以 下	5 mg/L 以下	50mg/L 以下	5 mg/L 以上	_
D	工業用水2級 農業用水 及びEの欄に掲げる もの	6.0以上8.5以 下	8mg/L以下	100mg/L以下	2 mg/L 以上	_
E	工業用水3級環境保全	6.0以上8.5以 下	10mg/L以下	ごみ等の浮遊が 認められないこ と。	2 mg/L以上	_

- 注1 類型指定を行っている水域が対象。
 - 2 基準値は、日間平均値。

イ 海域

(ア) COD等を基準とする利用目的別類型

項目				基注	準値	
類型	利用目的の適応性	水素イオン 濃度 (pH)	化学的酸素 要求量 (COD)	溶存酸素量 (DO)	大腸菌数	n-ヘキサン 抽出物質 (油分等)
A	水産1級 水浴 自然環境保全 及びB以下の欄に掲げるもの	7.8以上 8.3以下	2 mg/L 以 下	7.5mg/L以上	300CFU/100mL 以下	検出されないこと。
В	水産2級 工業用水 及びCの欄に掲げるもの	7.8以上 8.3以下	3 mg/L 以 下	5 mg/L 以上	-	検出されないこと。
С	環境保全	7.0以上 8.3以下	8 mg/L以 下	2 mg/L 以上		_

- 注1 類型指定を行っている水域が対象。
 - 2 基準値は、日間平均値。

(イ) 全窒素及び全燐を基準とする利用目的別類型

項目		基	準 値
類型	利用目的の適応性	全窒素	全燐
I	自然環境保全及び II 以下の欄に掲げるもの (水産 2 種及び 3 種を除く。)	0.2mg/L 以下	0.02mg/L 以下
II	水産1種 水浴及び III 以下の欄に掲げるもの (水産2種及び3種を除く。)	0.3mg/L 以下	0.03mg/L 以下
III	水産2種及び IV の欄に掲げるもの (水産3種を除く。)	0.6mg/L以下	0.05mg/L 以下
IV	水産3種 工業用水 生物生息環境保全	1 mg/L以下	0.09mg/L 以下

- 注1 類型指定を行っている水域が対象。
 - 2 基準値は、年間平均値。

ウ 水生生物保全に係る水域類型及び基準値の概要

71111	の水土で	ポる小域類至及い基準値の概要		++ >/#- -+-	
				基準値	
水域	類型	水生生物の生息状況の適応性	全亜鉛	ノニルフェノール ※1	直鎖アルキルベ ンゼンスルホン 酸及びその塩(以 下「LAS」という。) ※2
	生物A	イワナ、サケ、マス等比較的低温域を好む 水生生物及びこれらの餌生物が生息する水 域	0.03mg/L以下	0.001mg/L以下	0.03mg/L 以下
河川及び	生物特A	生物Aの水域のうち、生物Aの欄に掲げる 水生生物の産卵場(繁殖場)又は幼稚仔の 生育場として特に保全が必要な水域	0.03mg/L 以下	0.0006mg/L以下	0.02mg/L 以下
湖沼	生物B	コイ、フナ等比較的高温域を好む水生生物 及びこれらの餌生物が生息する水域	0.03mg/L以下	0.002mg/L以下	0.05mg/L 以下
	生物特B	生物A又は生物Bの水域のうち、生物Bの欄に掲げる水生生物の産卵場(繁殖場)又は幼稚仔の生育場として特に保全が必要な水域	0.03mg/L以下	0.002mg/L以下	0.04mg/L 以下
	生物A	水生生物の生息する水域	0.02mg/L 以下	0.001mg/L以下	0.01mg/L 以下
海域	生物特A	生物Aの水域のうち、水生生物の産卵場 (繁殖場) 又は幼稚仔の生育場として特に 保全が必要な水域	0.01mg/L 以下	0.0007mg/L以下	0.006mg/L以下

- 注1 類型指定を行っている水域が対象。
 - 2 基準値は、年間平均値。
- ※1 平成24年8月22日環境省告示第127号により追加※2 平成25年3月27日環境省告示第30号により追加

③ 公共用水域における水質汚濁に係る環境基準の年間達成状況の評価方法

	の保護に関する 環境基準	同一測定地点(表層のみ)における総検体数の平均値が基準に適合している場合、達成となる。ただし、全シアンは、不検出の場合に達成となる。
	BOD • COD	・環境基準点において、日間平均値(複数層ある場合は、全層(各層の平均値)の日間平均値)の75%値が基準に適合している場合、達成となる。 ・環境基準点が複数ある場合は、いずれかの地点で不適合の場合、その水域は非達成となる。
生活環境 の保全に 関する 環境基準	全窒素・全燐	・環境基準点において、年間平均値(複数層ある場合は、表層の年間平均値) が基準に適合している場合に、達成となる。 ・環境基準点が複数ある場合は、いずれかの地点で不適合の場合、その水 域は非達成となる。
,	水生生物保全に 係る項目	・環境基準点において、年間平均値(複数層ある場合は、全層(各層の平均値)の年間平均値)が基準に適合している場合に、達成となる。 ・環境基準点が複数ある場合は、いずれかの地点で不適合の場合、その水域は非達成となる。

2-2 水質測定結果一覧 (2-9~2-23、2-28~2-38) の見方

イ 年間調査結果

x :環境基準に適合しない日数

pH において複数層ある場合は、いずれかの層において基準に適合しない場合、全層の基準に 適合しない日数として起算

基準のない項目は、「一」と表記

y :総測定日数

通日調査を1日として起算

ただし、市田川(貯木橋)においては、年間調査1回分を通日調査と同日実施のため、年間 12回の調査のうち、1回分を通日調査の日間平均値を用いて評価

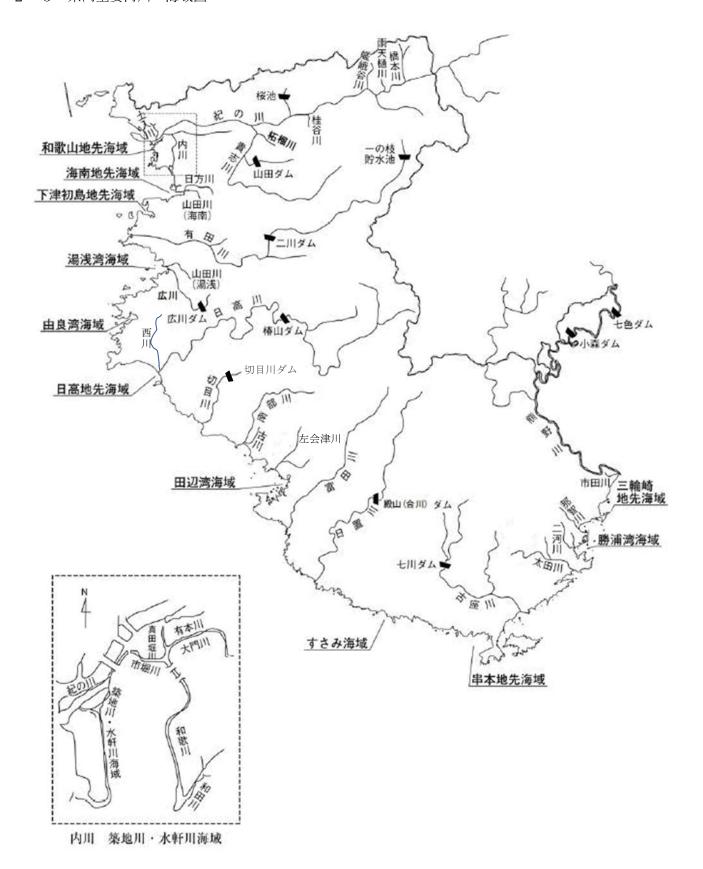
平均:日間平均値の年間平均値

()内は75%値

基準不適合は、太字斜体で表記

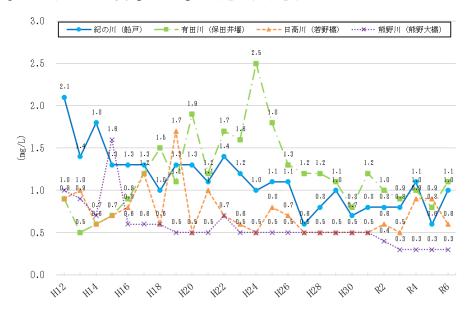
年間達成状況の評価において、環境基準未達成項目は、網かけ

ロ 通日調査結果

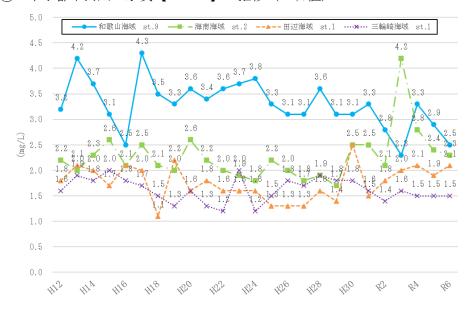

m:基準のない項目は、「一」と表記

n : 総測定回数 平均:日間平均値

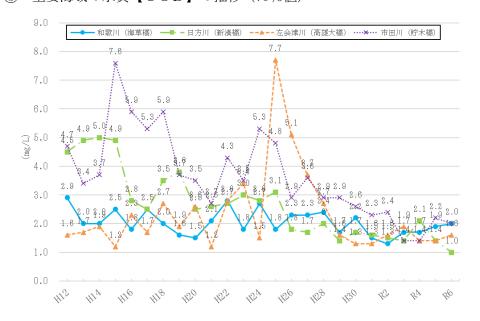
()内は75%値


基準不適合は、太字斜体で表記

2-3 県内主要河川・海域図



2-4 水質の推移


① 主要河川の水質【BOD】の推移(75%値)

② 中小都市河川の水質【BOD】の推移(75%値)

③ 主要海域の水質【COD】の推移(75%値)

2-5 河川の水域・項目別測定回数一覧

		糸		橋本	桂谷	嵯峨	雨天	j J		柘榴	土入	内	日方	山 田 川	有田田	山 田 川	広	日高
		J		Л	ij	谷川	樋川	j		JII	Л	Л	Л	海南	Л	湯港	Л	Л
	рН DO	52 52	24 24	18 18	6 6	6 6	6	30 30	4	6	48 48	168 168	12 12	12 12	22 22	6	6	28 28
	BOD	52	24	18	6	6	6	30	4	6	48	168	12	12	22	6	6	28
生活	COD	52	24	18	6	6	6	30	4	6	48	168	12	12	22	6	6	28
環	SS 大腸菌数	52 52	24 24	18 18	6	6	6	30 30	4	6	48 18	168 36	12 12	12 12	22 22	6	6	28 28
境項	n-^キサン抽出物質 全窒素	1 50		10	G	C	G	30	4	G	12	42	6 12	6 12	6	G	G	6
É	全燐	52 52		18 18	6	6	6	30	4	6	24 24	84 84	12	12	22 22	6	6	28 28
	全亜鉛 ノニルフェノール	12 12		18 1	6	6	6	30 2	1	6	12 2	42 7	12	12	22 2	6	6	28 2
	直鎖アルキルベンゼンスルホン酸及びその塩	12		1				2	1		2	7			2			2
	カト* ミウム 全シアン	8		4		4	4	4		4	24 8	84 28	4	4	4	4	4	8
	鉛	28		4		4	4	4		4	24	84	4	4	4	4	4	8
	六価クロム 砒素	8 10		4		4	4	4		4	24 24	84 84	4	4	4	4	4	8 8
	総水銀	8		4		4	4	4		4	8	28	4	4	4	4	4	8
	アルキル水銀 PCB	3		4		4	4	4		4	8	28	4	4	4	4	4	8
	シ゛クロロメタン	8		4		4	4	4		4	8	28	4	4	4	4	4	8
	四塩化炭素 1,2-ジクロロエタン	- 8 - 8		4		4	4	4		4	8	28 28	4	4	4	4	4	8
健	1, 1-ジクロロエチレン	8		4		4	4	4		4	8	28	4	4	4	4	4	8
康	シスー1, 2-シ、クロロエチレン 1, 1, 1-トリクロロエタン	8		4		4	4	4		4	8	28 28	4	4	4	4	4	8 8
項目	1, 1, 2-トリクロロエタン	8		4		4	4	4		4	8	28	4	4	4	4	4	8
	トリクロロエチレン テトラクロロエチレン	8 8		4		4	4	4		4		28 28	4	4	4	4	4	8 8
	1, 3-ジクロロプロペン	8		4		4	4	4		4	8	28	4	4	4	4	4	8
	チウラム シマシ゛ン	3		4		4	4	4		4	- 8 - 8	28 28	4	4	4	4	4	8 8
	チオヘ゛ンカルフ゛	3		4		4	4	4		4	8	28	4	4	4	4	4	8
	へ゛ンセ゛ン セレン	8 8		4		4	4	4		4	8 8	28 28	4	4	4	4	4	8 8
	硝酸性窒素及び亜硝酸性窒素 - 車	52 12		4		4	4	4	4	4 4	16	56 40	4	4	4	4	4	8 8
	ふっ素 ほう素	12		4		4	4	4		4	16 16	40	4	4	4	4	4	8
	1, 4-ジオキサン 銅	8		4	6	4	4	4	1	4	8 24	28 84	4	4	4	4	4	8
特殊	溶解性鉄	5							1		24	04						
項	溶解性マンガン	1									24	84		***************************************				
目	フェノール類	1																
	EPN 7 z / - N	3		1				2				28 28	ļ		2			2
	クロロホルム	1		1				2							2			2
	ホルムアルテ゛ヒト゛ 4-tオクチルフェノール	3		1				2						•	2			2
	アニリン 2,4-ジクロロフェノール	3																
	トランスー1、2-ジクロロエチレン	3																
	1,2-ジクロロプロパン p-ジクロロベンゼン	1																
	イソキサチオン	1																
	ダイアジノン フェニトロチオン (MEP)	1																
	イソプロチオラン	1				ļ												
要	オキシン銅 (有機銅) クロロタロニル (TPN)	1																
監視	プロピザミド	1																
項目	ジクロルボス (DDVP) フェノブカルブ (BPMC)	1					************								***************************************	***************************************		
	イプロベンホス(IBP) クロルニトロフェン (CNP)	1																
	トルエン	1																
	キシレン フタル酸ジエチルヘキシル	1 1		1				1					1	1	1			2
	ニッケル	6												1	1			
	モリブデン アンチモン	2																
	塩化ビニルモノマー	1		1		 		1					1	1	1			2
	エピクロロヒドリン 全マンガン	2		11				1					11	11	11			2
	ウラン	2		1		Ī		1					1	1	1			0
	PF0S※1 PF0A※2	5 5		1			<u></u>	1 1					1	1	1		L	2
	PF0S及びPF0A	5		1		<u> </u>		1	4		1.0	EC	1	1	1			2
	アンモニア性窒素 硝酸性窒素	52 52		4		4	4	4	4	4	16 16	56 56	4	4	4	4	4	8
そ	亜硝酸性窒素 リン酸性リン	52 52	-	4		4	4	4	4	4	16	56 56	4	4	4	4	4	8
の他	濁度	52 52	24						4		16	56	6	6	6			12
の	トリハロメタン生成能 2 - MIB	16 12	-	ļ					-									
項目	ジオスミン	12																
H	塩化物イオン塩分濃度	52	24	4		4	4	4	4	4	48	168	4	4	4	4	4	8
	電気伝導率	52	24	18	6	6	6	30	4	6	48	168	12	12	18	6	6	24
湘	<u>通 日 調 査</u> 別 定 機 関 名	1	1	2	2	2	2	2	1	2	3	3	2	2	2	2	2	2
										_								

※1 ベルフルオロオクタンスルホン酸 (PFOS) ※2 ベルフルオロオクタン酸 (PFOA) (備考) 測定機関名の1は近畿地方整備局、2は和歌山県、3は和歌山市

		西川	切目	南部	古川	左会津	富田	日置	古座	太田	二河	那智	負	予	i F	3
		7'1	川	Л	71	Л	Л	Ш	Л	Л	Л	Л	J		JI	
	pН	6	6	24 24	12	48 48	16	16 16	12 12	12 12	12 12	12	12	16	12	24
	DO BOD	6	6	24	12 12	48	16 16	16	12	12	12	12 12	12 12	16 16	12 12	24 24
生	COD	6	6	24	12	48	16	16	12	12	12	12	12	16	12	24
活環	SS	6	6	24	12	48	16	16	12	12	12	12	12	16	12	24
境	大腸菌数 n-ヘキサン抽出物質	6	6	24	12	48 6	16	16	12	12	12	12	12	16 1		
項	全窒素	6	6	12	6	24	16	16	12	12	12	12	12			
目	全燐	6	6	12	6	24	16	16	12	12	12	12	12			
	全亜鉛 ノニルフェノール	6	6	12 1	6	24 1	16 2	16 2	12 2	12 1	12 1	12 1	12 1	5 5	2	
	直鎖アルキルベンゼンスルホン酸及びその塩	***************	***************************************	1	***************************************	1	2	2	2	1	1	1	1	5	2	
	カト゛ミウム 全シアン	4	4	4	4	- 8 - 8	4	4	- 8 - 8	4	8	- 8 - 8	4	4	2	
	鉛	4	4	4	4	8	4	4	8	4	<u>8</u> 8	8	4	6	4	
	六価クロム	4	4	4	4	8	4	4	8	4	8	8	4	4	2	
	松素 総水銀	4	4	4	4	8 8	4	4	8 8	4	8 8	8 8	4	4	4 2	
	アルキル水銀															
	PCB シ、クロロメタン	4	4	4	4	- 8 - 8	4	4	- 8 - 8	4	- 8 - 8	8 8	4	1 4	1 2	
	四塩化炭素	4	4	4	4	8	4	4	8	4	8	8	4	4	2	
	1, 2-ジクロロエタン	4	4	4	4	8	4	4	8	4	8	8	4	4	2	
健	1, 1-ジクロロエチレン シス-1, 2-ジクロロエチレン	4	4	4	4	- 8 - 8	4	4	- 8 - 8	4	8 8	8 8	4	4	2	
康項	1, 1, 1-トリクロロエタン	4	4	4	4	8	4	4	8	4	8	8	4	4	2	
目	1, 1, 2-トリクロロエタン	4	4	4	4	8	4	4	8	4	8	8	4	4	2	
	トリクロロエチレン テトラクロロエチレン	4	4	4	4	8 8	4	4	8 8	4	8 8	8 8	4	4	2	
	1, 3-ジクロロプロペン	4	4	4	4	8	4	4	8	4	8	8	4	4	2	
	チウラム シマシ、ン	4	4	4	4	- 8 - 8	4	4	- 8 - 8	4	8 8	8 8	4	1	1	
	チオヘ゛ンカルフ゛	4	4	4	4	8	4	4	8	4	8	8	4	1	1	
	ベンゼン ***	4	4	4	4	8	4	4	8	4	8	8	4	4	2	
	セレン 硝酸性窒素及び亜硝酸性窒素	4	4	4	4	- 8 - 8	4	4	- 8 - 8	4	- 8 - 8	8 8	4	4 6	4	
	ふっ素	4	4	4	4	8	4	4	8	4	8	8	4			
	ほう素 1,4-ジオキサン	4	4	4	4	- 8 - 8	4	4	- 8 - 8	4	8 8	8 8	4	4	2	
特	1, 4-ンカイリン 銅	T	T	T			T	т		6	12	12	12	1	1	
殊	溶解性鉄													1	1	
項	溶解性マンガン クロム				••••			***************************************			***************************************	•••••		1 1	1	
目	フェノール類													1		
	EPN フェノール			1		1	2	2	2	1	1	1	1	1 1		
	クロロホルム			1		1	2	2	2	1	1	1	1	2	2	
	ホルムアルテ゛とト゛	*****************		1		1	2	2	2	1	1	1	1	1		
	4-tオクチルフェノール アニリン										***************************************			1		
	2, 4-ジクロロフェノール													1		
	トランス-1.2-ジクロロエチレン 1,2-ジクロロプロパン													1		
	p - ジクロロベンゼン													1		
	イソキサチオン													1		
	ダイアジノン フェニトロチオン (MEP)													1		
	イソプロチオラン													1		
要	オキシン銅 (有機銅) クロロタロニル (TPN)				<u></u>							ļ		1	ļ	
監視	プロピザミド				<u> </u>						L	<u></u>		1		
項	ジクロルボス(DDVP)													1		
目	フェノブカルブ (BPMC) イプロベンホス (IBP)				 								L	1		
	クロルニトロフェン(CNP)	***************************************	***************************************											1		
	トルエン キシレン											l		1		
	インレン フタル酸ジエチルヘキシル			1	1	2	1	1	2	1	1	2	1	2		
	ニッケル													2	2	
	モリブデン アンチモン													1 2		
	塩化ビニルモノマー			1	1	2	1	1	2	1	1	2	1	1		
	エピクロロヒドリン 全マンガン			1	1	2	1	1	2	1	1	2	1	1 2		
	主マンガン ウラン				<u></u>										<u> </u>	
	PF0S※1			1	1	2	1	1	2	1	1	2	1	1	1	
	PF0A※2 PF0S及びPF0A			1	1	2	1	1	2	1	1	2	1	1 1	1	
	アンモニア性窒素															
	硝酸性窒素 西硝酸性霉素	4	4	4	4	- 8 - 8	4	4	8	4	- 8 - 8	8 8	4	6 6	4	
その	亜硝酸性窒素 リン酸性リン	4	4	6	6	8 12	6	6	8 12	6	6	12	4 6	U	4	
他	濁度												12	16	12	24
の	トリハロメタン生成能 2 - MIB				 						L	ļ			ļ	
項目	ジオスミン										b:::::::::::::::::::::::::::::::::::::					
-	塩化物イオン塩分濃度	4	4	4	4	8	4	4	8	4	8	8	4	16	12	24
L	温分底及 電気伝導率	6	6	12	6	24	12	12	12	12	12	12	12	16	12	24
.**	通日調査															0
<u> </u>	則 定 機 関 名	2	2	2	2 クタン	2	2	2	2	2	2	2	2	1	1	1

2-6 河川のBODの水域別環境基準達成状況一覧

環境基準類型					基 準	を満足し [*]	ていない地	」点 数	
類型指定水域名	類型	指定 年度	環境基準地 点数	基準を満足 する地点数	合 計	x/y=	100%>x/y	50%>x/y	達成状況
炽土]日尼小·纳石					П ВІ	100%	≧50%	>25%	
紀 の 川 ※1	A	1972	3	3	0	0	0	0	0
橋 本 川	A	1974	1	1	0	0	0	0	0
貴 志 川	A	1974	1	1	0	0	0	0	0
月 方 川	С	2010	1	1	0	0	0	0	0
山 田 川	D	1974	1	1	0	0	0	0	0
有 田 川	A	1974	1	1	0	0	0	0	0
日 高 川	A	1974	2	2	0	0	0	0	0
南部川 (南部大橋上流)	A	1975	1	1	0	0	0	0	0
南部川 (古川)	В	1975	1	1	0	0	0	0	0
左会津川 (高雄大橋上流)	A	1975	1	1	0	0	0	0	0
左会津川 (高雄大橋下流)	A	1975	1	0	1	0	0	1	×
太田川 (旭橋上流)	A	1977	1	1	0	0	0	0	0
那智川 (市野々橋上流)	AA	1977	1	1	0	0	0	0	0
那智川 (市野々橋下流)	A	1977	1	1	0	0	0	0	0
二河川	A	1977	1	1	0	0	0	0	0
熊 野 川 ※2	A	1977	2	2	0	0	0	0	0
熊野川 (市田川) ※1	D	2010	1	1	0	0	0	0	0
富 田 川	A	1977	1	1	0	0	0	0	0
日 置 川	AA	1977	1	1	0	0	0	0	0
古座川 (高瀬橋上流)	AA	1977	1	1	0	0	0	0	0
古座川(高瀬橋下流)	AA	2010	1	1	0	0	0	0	0
土入川 (河合橋上流) ※3	В	1974	1	1	0	0	0	0	0
土入川 (河合橋下流) ※3	С	1974	1	1	0	0	0	0	0
大 門 川 ※3	С	1999	1	1	0	0	0	0	0
有 本 川 ※3	С	1999	1	1	0	0	0	0	0
真 田 堀 川 ※3	С	1999	1	1	0	0	0	0	0
市 堀 川 ※3	С	1999	1	1	0	0	0	0	0
和 歌 川 ※3	В	1999	1	1	0	0	0	0	0
和歌川 (仮堰 ~ 旭橋) ※3	В	1974	1	1	0	0	0	0	0
和 田 川 ※2	В	1974	1	1	0	0	0	0	0
計	30	-	34	33	1	0	0	1	○29 ×1

- (備考) 1 環境基準類型とは、自然環境保全、水道水、工業用水等、水の利用目的の適応性を考慮し、 維持されることが望ましい水質をAAからEまでの6つに類型分けしたものである。
 - 2 x:環境基準に適合しない日数 y:総測定日数
 - 3 基準を満足するとは、x/y≤25%であることをいう。
 - 4 ※1の全地点及び※2の一部地点は、国土交通省近畿地方整備局調査、※3は、和歌山市調査
 - 5 通日調査実施水域(紀の川、熊野川(市田川))については、
 - x:環境基準に適合しない日数 y:総測定日数に通日調査の日数を含んでいます。
 - 6 複数の基準点を持つ水域においては、当該水域内の全ての環境基準点において、環境基準に 適合している場合に、達成と判断している。

(北山川については、和歌山県では環境基準点を設定していない。)

2-7 河川における人の健康の保護に関する環境基準超過状況一覧 ほう素

水域名		地点名	平均値	備考
土入川 (河合橋下流)	*	土入橋	1.2	海水の影響による
大門川	*	伊勢橋	1. 1	海水の影響による
和歌川(小雑賀橋から上流)	×	海草橋	2.5	海水の影響による
和歌川(小雑賀橋から上流)	*	新堀橋	2.3	海水の影響による
和歌川(小雑賀橋から上流)	*	小雑賀橋	2.8	海水の影響による
和歌川(小雑賀橋から旭橋)	*	旭橋	2.6	海水の影響による
和田川	*	新橋	1.6	海水の影響による
市堀川	×	住吉橋	1.5	海水の影響による
市堀川	*	材木橋	2.5	海水の影響による
日方川		新湊橋	2.7	海水の影響による
山田川 (海南)		海南大橋	2.9	海水の影響による
二河川(左)		滝橋	2.9	海水の影響による

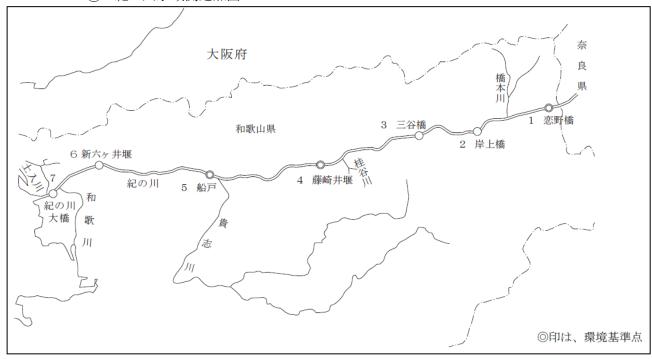
※和歌山市調査水域

2-8 河川の水生生物の保全に関する項目の水域別環境基準達成状況一覧

						全亜鉛		ノニルフ	ェノール			LAS	
水域名	環境基準類型あてはめ水域名	類型	指定年度	環境基準点	年間平均値 (mg/L)	環境基準値 (mg/L)	達成状況	年間平均値 (mg/L)	環境基準値 (mg/L)	達成状況	年間平均値 (mg/L)	環境基準値 (mg/L)	達成状況
	紀の川	生物B	2010	恋野橋 藤崎井堰 船戸	0. 001 0. 004 0. 006	0.03以下	0	<0.00006 <0.00006 <0.00006	0.002以下	0	<0.0006 <0.0006 0.0008 0.0007	0.05以下	0
紀の川水域	橋本川	生物B	2014	橋本	0.002	0.03以下	0	< 0.00006	0.002以下	0	0.0008	0.05以下	0
	貴志川 (小川橋から上流の水域)	生物A	2014	小川橋	0.001	0.03以下	0	< 0.00006	0.002以下	0	< 0.0006	0.05以下	0
	貴志川(紀の川合流点から小川橋までの水 域)	生物B	2014	諸井橋	0.001	0.03以下	0	< 0.00006	0.002以下	0	0.0008	0.05以下	0
有田川水域	有田川 (二川ダムから上流の水域)	生物A	2014	小峠橋	<0.001	0.03以下	0	< 0.00006	0.002以下	0	< 0.0006	0.05以下	0
日 田 川 水 域	有田川(安諦橋から二川ダムまでの水域)	生物B	2014	保田井堰	0.001	0.03以下	0	< 0.00006	0.002以下	0	< 0.0006	0.05以下	0
日高水域	日高川 (椿山ダムから上流の水域)	生物A	2014	菅橋	<0.001	0.03以下	0	< 0.00006	0.002以下	0	< 0.0006	0.05以下	0
口间水域	日高川 (天田橋から椿山ダムまでの水域)	生物B	2014	若野橋	0.001	0.03以下	0	< 0.00006	0.002以下	0	< 0.0006	0.05以下	0
南部川水域	南部川(南部大橋から上流の水域)	生物B	2014	南部大橋	0.005	0.03以下	0	< 0.00006	0.002以下	0	< 0.0006	0.05以下	0
左会津川水域	左会津川 (田辺大橋から上流の水域)	生物B	2014	会津橋	0.004	0.03以下	0	< 0.00006	0.002以下	0	0.017	0.05以下	0
富田川水域	富田川 (滝尻橋から上流の水域)	生物A	2014	滝尻橋	<0.001	0.03以下	0	< 0.00006	0.002以下	0	< 0.0006	0.05以下	0
田田川水域	富田川(河口から滝尻橋までの水域)	生物B	2014	富田橋	0.002	0.03以下	0	< 0.00006	0.002以下	0	< 0.0006	0.05以下	0
	日置川 (殿山ダムから上流の水域)	生物A	2014	春日橋	<0.001	0.03以下	0	< 0.00006	0.002以下	0	< 0.0006	0.05以下	0
日置川水域	日置川 (日置川大橋及び日置川小橋から殿 山ダムまでの水域)	生物B	2014	安宅橋	0.001	0.03以下	0	< 0.00006	0.002以下	0	< 0.0006	0.05以下	0
古座川水域	古座川 (高瀬橋から上流の水域)	生物A	2014	高瀬橋	0.007	0.03以下	0	< 0.00006	0.002以下	0	< 0.0006	0.05以下	0
百座川小城	古座川(古座大橋から高瀬橋までの水域)	生物B	2014	古座橋	0.008	0.03以下	0	< 0.00006	0.002以下	0	< 0.0006	0.05以下	0
太田川水域	太田川 (旭橋から上流の水域)	生物B	2014	下里大橋	0.005	0.03以下	0	< 0.00006	0.002以下	0	< 0.0006	0.05以下	0
二河川水域	二河川 (JR紀勢本線二河川橋梁から上流 の水域)	生物B	2014	二河橋	0.011	0.03以下	0	< 0.00006	0.002以下	0	< 0.0006	0.05以下	0
那智川水域	那智川 (JR紀勢本線那智川橋梁から上流 の水域)	生物B	2014	川関橋	0.008	0.03以下	0	< 0.00006	0.002以下	0	0.0006	0.05以下	0
能野川	熊野川 (高田川合流点から上流の水域のうち、和歌山県の区域に属する水域)	生物A	2014	宮井橋	0.008	0.03以下	0	< 0. 00006	0.002以下	0	< 0.0006	0.05以下	0
7.7. E4.771	熊野川(河口から高田川合流点までの水域 のうち、和歌山県の区域に属する水域)	生物B	2014	熊野大橋	0.001	0.03以下	0	< 0.00006	0.002以下	0	< 0.0006	0.05以下	0

- (備考) 1 水生生物の保全に関する環境基準類型とは、水環境における生態系の保護、生物多様性の確保等の観点から、水生生物の生息状況に 応じた維持されることが望ましい水質の類型分けをしたものである。
 - 2 ※1の全地点は、国土交通省近畿地方整備局調査
 - 3 複数の基準点を持つ水域においては、当該水域内の全ての環境基準点において、環境基準に適合している場合に、達成と判断している。 (北山川については、和歌山県では環境基準点を設定していない。)

2-9 紀の川水域水質測定結果


①のとおり7測定点で測定を実施した。環境基準点である恋野橋、藤崎井堰、船戸では年間12回、補助点である岸上橋、三谷橋、新六ヶ井堰、紀の川大橋では年4回の測定を実施し、環境基準点である藤崎井堰及び船戸の2測定点で通日調査を実施した。

その結果は、③のとおりである。この河川は環境基準類型(河川の部) Aをあてはめている。河川の水質汚濁指標であるBODの 75%値でみると環境基準点である恋野橋、藤崎井堰、船戸ではそれぞれ 0.6~mg/1、0.8~mg/1(通日調査含む)、1.0mg/1(通日調査含む)で環境基準値(A:2~mg/1)に適合している。


また、平成22年9月24日付け環境省告示第46号で紀の川(大迫ダム貯水池(全域)を除く)が 水生生物保全に係る類型として生物Bと指定された。

水生生物保全に係る環境基準項目である全亜鉛【基準値(生物 B: 0.03 mg/L)】、ノニルフェノール【基準値(生物 B: 0.002 mg/L)】、LAS【基準値(生物 B: 0.05 mg/L)】の平均値でみると、全ての環境基準点で環境基準値に適合している。

① 紀の川水域測定点図

② 紀の川のBOD75%値の推移

③ 紀の川水域水質測定結果一覧

	水 域 名						紀(וו מ					
	地 点 名	恋	野橋(A【基	】, 生物B【基])	岸	上橋(A【補	】,生物B【補	i])	Ξ	谷橋(A【補	】,生物B【補])
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		7.6	8.0	0/12		7.7	7.9	0/4		7.8	7.9	0/4
	D O (mg/l)	10	8.2	12	0/12	10	8.3	12	0/4	10	8.2	12	0/4
		(0.6)				(0.7)				(0.7)			
	B O D (mg/l)	0.6	<0.5	0.9	0/12	0.7	0.5	1.0	0/4	0.7	<0.5	0.9	0/4
生	C O D (mg/l)	1.9	1.4	2.6	-/12	2.0	1.5	2.5	-/4	1.9	1.5	2.2	-/4
活	S S (mg/l)	3	<1	5	0/12	3	1	4	0/4	2	1	3	0/4
環境	大 腸 菌 数 (CFU/100ml)	74	20	190	0/12	120	42	270	0/4	51	2	98	0/4
項目	N - へ キ サ ン 抽 出 物 質 (mg/l)												
"	全 窒 素 (mg/l)	0.45	0.28	0.58	-/12	0.54	0.48	0.67	-/4	0.52	0.43	0.65	-/4
	全 燐 (mg/l)	0.022	0.016	0.032	-/12	0.027	0.022	0.033	-/4	0.022	0.016	0.025	-/4
	全 亜 鉛 (mg/l)	0.001	0.001	0.001	0/2	0.002	0.002	0.002	0/1	0.001	0.001	0.001	0/1
	ノニ ル フェ ノー ル (mg/l)			<0.00006	0/2			<0.00006	0/1			<0.00006	0/1
	L A S (mg/l)			<0.0006	0/2	0.0006	0.0006	0.0006	0/1	0.0006	0.0006	0.0006	0/1
	カト * ミウム (mg/l)			<0.0003	0/2								
	全 シ ア ン (mg/l)			<0.1	0/2								
	鉛 (mg/l)			<0.005	0/4	<0.005		<0.005	0/6				
	六 価 ク ロ ム (mg/l)			<0.01	0/2								
	砒 素 (mg/l)			<0.001	0/2								
	総 水 銀 (mg/l)			<0.0005	0/2								
	アルキル水 銀 (mg/l)			(0.0005	0 /1								
健	P C B (mg/l) シ			<0.0005	0/1								
				<0.002	0/2								
	四塩化炭素 (mg/l) 1,2-シ・クロロエタン (mg/l)			<0.0002	0/2								
康	1,1- シ クロロエチレン (mg/l)			<0.002	0/2								
凍	シス -1,2- シ クロロエチレン (mg/l)			<0.002	0/2								
	1,1,1-トリクロロエタン (mg/l)			<0.01	0/2								
	1,1,2- トリクロロエタン (mg/l)			<0.0006	0/2								
項	トリクロロエチレン (mg/l)			<0.001	0/2								
	テトラクロロエチレン (mg/l)			<0.001	0/2								
	1,3- シ ^ クロロフ ° ロヘ ° ン (mg/l)			<0.0002	0/2								
	チ ウ ラ ム (mg/l)			<0.0006	0/1								
目				<0.0003	0/1								
	チオへ゜ンカルフ゜(mg/l)			<0.002	0/1								
	へ * ン セ * ン (mg/l)			<0.001	0/2								
	セ レ ン (mg/l)			<0.001	0/2								
	硝酸性窒素及び亜硝酸性窒素 (mg/l)	0.36	0.21	0.50	0/12	0.42	0.34	0.51	0/4	0.42	0.31	0.54	0/4
	ふ っ 素 (mg/l)			<0.1	0/4								
	ほ う 素 (mg/l)			<0.1	0/4								
	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/2								
	銅 (mg/l)			<0.04	-/1			<0.04	-/1			<0.04	-/1
特	鉄 (溶 解 性) (mg/l)			<0.05	-/1			<0.05	-/1			<0.05	-/1
殊項	マンカ゛ン(溶解性) (mg/l)												
目	7 □ ᠘ (mg/l)												
	フ ェ ノ ー ル 類 (mg/l)												

	水 域 名						紀 0	וו מ					
	地 点 名	恋	野橋(A【基】	l, 生物B【基])	岸	上橋(A【補		i])	Ξ	谷橋(A【補	】,生物B【補])
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	E P N (mg/l)												
	フ ェ ノ ー ル (mg/l)			<0.001	-/1								
	クロロホルム (mg/l)												
	ホルムアルデヒド (mg/l)			<0.008	-/1								
	4-t- オクチルフェノー ル (mg/l)			<0.00003	-/1								
	ア ニ リ ン (mg/l)			<0.002	-/1								
	2,4- ジクロロフェノー ル (mg/l)			<0.0003	-/1								
	トランス-1,2-ジクロロエチレン(mg/l)												
	1,2 — ジ クロロプロパン(mg/l)												
	p ー ジ ク ロ ロ ベ ン ゼ ン (mg/l)										ļ		
	イ ソ キ サ チ オ ン (mg/l)												
	ダ イ ア ジ ノ ン (mg/l)												
	フェニトロチオン(MEP)(mg/l)												
	イ ソ プ ロ チ オ ラ ン (mg/l)												
	オキシン銅(有機銅)(mg/l)												
要監	クロロタロニル (TPN) (mg/l)												
視	プロピザミド (mg/l)												
項目	ジ ク ロ ル ボ ス (DDVP)(mg/l)												
_	フェノブカルブ (BPMC)(mg/l)												
	イプロベンホス (IBP)(mg/l)												
	クロルニトロフェン (CNP)(mg/l)												
	ト ル エ ン (mg/l) キ シ レ ン (mg/l)												
	フタル酸ジェチルヘキシル(mg/l) ニ ッ ケ ル (mg/l)												
	モ リ ブ デ ン (mg/l)												
	ア ン チ モ ン (mg/l)												
	塩 化 ビニ ル モ ノマ ー (mg/l)												
	エピクロロヒドリン (mg/l)												
	全 マ ン ガ ン (mg/l)												
	ウ ラ ン (mg/l)												
	P F O S ※ 2(ng/l)												
	P F O A ※ 3(ng/l)												
	PFOS及びPFOA(ng/l)	3.1	3.1	3.1	-/1								
	ア ン モ ニ ア 性 窒 素 (mg/l)			<0.06	-/12			<0.06	-/4			<0.06	-/4
	硝 酸 性 窒 素 (mg/l)	0.36	0.21	0.50	-/12	0.42	0.34	0.51	-/4	0.42	0.31	0.54	-/4
	亜 硝 酸 性 窒 素 (mg/l)			<0.01	-/12			<0.01	-/4			<0.01	-/4
そ	リ ン 酸 性 リ ン (mg/l)	0.01	<0.01	0.02	-/12	0.02	0.01	0.02	-/4	0.02	<0.01	0.02	-/4
の	濁 度 (度)	3	1	5	-/12	2	1	3	-/4	2	1	2	-/4
他の	トリハロメタン 生 成 能 (mg/l)	0.028	0.020	0.036	-/4								
項	2 — M Ι Β (μ g/l)												
目	ジ オ ス ミ ン (μ mg/l)					0.001	<0.005	0.001	-/4	0.001	<0.005	0.001	-/3
	塩 化 物 イ オ ン (mg/l)	5	3	7	-/12	5	3	7	-/4	5	4	8	-/4
	塩 分 濃 度 (‰)												
	電 気 伝 導 率 (μ S/cm)	103	83	128	-/12	110	94	124	-/4	110	96	128	-/4

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値

^{※1} 総測定回数は通日調査を含む。ただし、BOD・CODは、通日調査の日平均値を1回の測定分として、測定回数に加算。

^{※2} ペルフルオロオクタンスルホン酸(PFOS)

^{※3} ペルフルオロオクタン酸(PFOA)

	水 域 名						紀(וו מ					
	地 点 名	藤山	奇井堰(A【基	基】,生物B【基	基】)	Á	沿戸(A【基】	, 生物B【基】)	新六	ケ井堰(A【ネ	浦】,生物B【	補】)
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	х/у	平均	最小値	最大値	x/y
	р Н		7.6	7.9	0/12		7.6	8.7	1/12		7.7	8.2	0/4
	D O (mg/l)	9.5	7.5	12	0/12	10	8.2	12	0/12	10	8.3	11	0/4
		(0.8)				(1)				(1.1)			
	B O D (mg/l)	0.7	0.5	1.2	0/12	0.9	<0.5	2.6	1/12	1.3	0.6	2.7	1/4
生	C O D (mg/l)	2.2	1.7	2.9	-/12	2.5	2	3.1	-/12	3.0	2.3	3.6	-/4
活	S S (mg/l)	2	1	5	0/12	4	2	8	0/12	4	4	4	0/4
環境	大 腸 菌 数 (CFU/100ml)	77	16	200	0/12	81	7	240	0/12	40	3	92	0/4
項目	N - へ キ サ ン 抽 出 物 質 (mg/l)							<0.5	-/1				
	全 窒 素 (mg/l)	0.62	0.40	0.90	-/12	0.72	0.45	1.0	-/12	0.88	0.62	1.1	-/4
	全 燐 (mg/l)	0.038	0.024	0.06	-/12	0.055	0.041	0.069	-/12	0.070	0.054	0.083	-/4
	全 亜 鉛 (mg/l)	0.004	0.001	0.006	0/2	0.006	0.004	0.007	0/4	0.004	0.004	0.004	0/1
	ノニ ル フェ ノー ル (mg/l)			<0.00006	0/2			<0.00006	0/4			<0.00006	0/1
Щ	L A S (mg/l)			<0.0006	0/2	0.0008	<0.0006	0.0015	0/4			<0.0006	0/1
	カ ト ゛ ミ ウ ム (mg/l)			<0.0003	0/2			<0.0003	0/4				
	全 シ ア ン (mg/l)			<0.1	0/2			<0.1	0/4				
	鉛 (mg/l)			<0.005	0/4			<0.005	0/4				
	六 価 ク ロ ム (mg/l)			<0.01	0/2			<0.01	0/4				
	砒 素 (mg/l)			<0.001	0/2			<0.001	0/4	0.001	<0.001	0.001	0/2
	総 水 銀 (mg/l)			<0.0005	0/2			<0.0005	0/4				
	アルキル水 銀 (mg/l)												
健	P C B (mg/l)			<0.0005	0/1			<0.0005	0/1				
	シ * ク ロ ロ メ タ ン (mg/l)			<0.002	0/2			<0.002	0/4				
	四塩化炭素(mg/l)			<0.0002	0/2			<0.0002	0/4				
	1,2- シ * クロロエタン (mg/l)			<0.0004	0/2			<0.0004	0/4				
康	1,1- シ クロロエチレン (mg/l)			<0.002	0/2			<0.002	0/4				
	シス -1,2- シ゛クロロエチレン (mg/l)			<0.004	0/2			<0.004	0/4				
	1,1,1- トリクロロエタン (mg/l) 1,1,2- トリクロロエタン (mg/l)			<0.01	0/2			<0.01	0/4				
項	トリクロロエチレン (mg/l)			<0.0006 <0.001	0/2			<0.0006 <0.001	0/4				
	下 り り ロ ロ エ チ レ ン (mg/l) テ ト ラ ク ロ ロ エ チ レ ン (mg/l)			<0.001	0/2			<0.001	0/4				
	ファックロロエテレフ (mg/l) 1,3- シ * クロロフ ° ロへ ° ン (mg/l)			<0.001	0/2			<0.001	0/4				
	f ウ ラ ム (mg/l)			<0.0002	0/2			<0.0002	0/4				
目	シマシ * ン (mg/l)			<0.0003	0/1			<0.0003	0/1				
	チオヘ゜ンカルフ゜(mg/l)			<0.002	0/1			<0.002	0/1				
	へ * ン セ * ン (mg/l)			<0.001	0/2			<0.001	0/4				
	セ レ ン (mg/l)			<0.001	0/2			<0.001	0/4				
	硝酸性窒素及び亜硝酸性窒素(mg/l)	0.46	0.29	0.69	0/12	0.55	0.29	0.77	0/12	0.64	0.24	0.86	0/4
	ふっ素 (mg/l)			<0.1	0/4			<0.1	0/4				
	ほ う 素 (mg/l)			<0.1	0/4			<0.1	0/4				
	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/2			<0.005	0/4				
П	銅 (mg/l)			<0.04	-/1			<0.04	-/1			<0.04	-/1
特	鉄 (溶 解 性) (mg/l)			<0.05	-/1			<0.05	-/1				
殊項	マンカ [°] ン(溶 解 性) (mg/l)							<0.01	-/1				
目	7 П Д (mg/l)							<0.03	-/1				
1 1	フェノール類 (mg/l)							<0.005	-/1				

	水 域 名						紀(וו מ					
	地 点 名	藤山	奇井堰(A【基	隻], 生物B【	基】)	Á	沿戸(A【基】	, 生物B【基】)	新六	ケ井堰(A【	哺】,生物B【	補】)
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	E P N (mg/l)							<0.0006	-/1				
	7 I / - N (mg/l)			<0.001	-/1			<0.001	-/1				
	クロロホルム (mg/l)							<0.001	-/1				
	ホルムアルデヒド (mg/l)			<0.008	-/1			<0.008	-/1				
	4-t- オクチルフェノー ル (mg/l)			<0.00003	-/1			<0.00003	-/1				
	ア ニ リ ン (mg/l)			<0.002	-/1			<0.002	-/1				
	2,4- ジクロロフェノー ル (mg/l)			<0.0003	-/1			<0.0003	-/1				
	トランス-1,2-ジクロロエチレン(mg/l)							<0.004	-/1				
	1,2 — ジ クロロプロパン(mg/l)							<0.006	-/1				
	p ー ジ ク ロ ロ ベ ン ゼ ン (mg/l)							<0.02	-/1				
	イ ソ キ サ チ オ ン (mg/l)							<0.0008	-/1	-/1			
	ダ イ ア ジ ノ ン (mg/l)							<0.0005	-/1				
	フェニトロチオン(MEP)(mg/l)							<0.0003	-/1				
	イソプロチオラン(mg/l)							<0.004	-/1				
	オ キ シ ン 銅 (有 機 銅)(mg/l)							<0.004	-/1				
要	クロロタロニル (TPN) (mg/l)							<0.005	-/1				
監	プ ロ ピ ザ ミ ド (mg/l)							<0.0008	-/1				
視項	ジ ク ロ ル ボ ス (DDVP)(mg/l)							<0.0008	-/1				
目	フェノブ カル ブ (BPMC)(mg/l)							<0.003	-/1				
	イプロベンホス(IBP)(mg/l)							<0.0008	-/1				
	クロルニトロフェン (CNP)(mg/l)							<0.0001	-/1				
	ト ル エ ン (mg/l)							<0.06	-/1				
	キ シ レ ン (mg/l)							<0.04	-/1				
	フタル 酸 ジェチル ヘキシル (mg/l)							<0.006	-/1				
	ニ ッ ケ ル (mg/l)			<0.001	-/1			<0.001	-/1			<0.001	-/1
	モ リ ブ デ ン (mg/l)							<0.007	-/1				
	ア ン チ モ ン (mg/l)							<0.002	-/2				
	塩 化 ビニ ル モ ノマ — (mg/l)							<0.0002	-/1				
	エピクロロヒドリン (mg/l)							<0.00003	-/1				
	全 マ ン ガ ン (mg/l)					0.02	<0.02	0.02	-/2				
	ウ ラ ン (mg/l)							<0.0002	-/2				
	P F O S ※ 2(ng/l)												
	P F O A ※ 3(ng/l)	-				-							
	PFOS及びPFOA(ng/l)	3.2	3.2	3.2	-/1	3.8	3.8	3.8	-/1	6.0	6.0	6.0	-/1
	ア ン モ ニ ア 性 窒 素 (mg/l)			<0.06	-/12			<0.06	-/12	0.06	<0.06	0.06	-/4
	硝 酸 性 窒 素 (mg/l)	0.50	0.29	0.69	-/12	0.55	0.29	0.77	-/12	0.63	0.23	0.85	-/4
	亜 硝 酸 性 窒 素 (mg/l)			<0.01	-/12	0.01	<0.01	0.01	-/12	0.01	<0.01	0.02	-/4
そ	リ ン 酸 性 リ ン (mg/l)	0.026	0.011	0.048	-/12	0.036	0.026	0.051	-/12	0.05	0.03	0.07	-/4
の	濁 度 (度)	3	1	6	-/12	4	2	7	-/12	4	3	5	-/4
他の	トリハロメタン 生成 能 (mg/l)	0.032	0.025	0.043	-/4	0.038	0.030	0.046	-/4	0.044	0.029	0.051	-/4
項目	2 — Μ Ι Β (μ g/l)												
	ジ オ ス ミ ン (μ mg/l)	0.0017	<0.005	0.002	-/3	0.0015	<0.005	0.002	-/4	0.002	<0.005	0.003	-/3
	塩 化 物 イ オ ン (mg/l)	6	4	9	-/12	7	4	10	-/12	7	6	9	-/4
	塩 分 濃 度 (‰)												
	電 気 伝 導 率 (μ S/cm)	120	96	156	-/12	130	105	172	-/12	150	132	169	-/4

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値

^{※1} 総測定回数は通日調査を含む。ただし、BOD・CODは、通日調査の日平均値を1回の測定分として、測定回数に加算。

^{※2} ペルフルオロオクタンスルホン酸(PFOS)

^{※3} ペルフルオロオクタン酸(PFOA)

	水 域 名						紀 (וו מ					
	地 点 名	紀の	川大橋(A【	補】,生物B【	(補】)	藤崎井	堰(A【基】,	生物B【基】)(通日)	船戸	i(A【基】, 生物	物B【基】)(j	通日)
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	m/n	平均	最小値	最大値	m/n
	р Н		7.9	8.0	0/4		7.8	8.8	3/12		7.8	8.7	3/12
	D O (mg/l)	8.9	8.1	10.0	0/4	8.4	6.6	11	5/12	7.9	7.6	8.2	0/12
		(0.8)											
	B O D (mg/l)	1.2	0.6	2.8	1/4	0.7	0.5	0.9	0/12	0.7	0.6	0.8	0/12
生	C O D (mg/l)	2.5	1.6	3.3	-/4	2.1	1.9	2.4	-/12	2.3	2.2	2.3	-/12
活	S S (mg/l)	4	2	6	0/4	2.5	1.4	5.2	0/12	3	2	3	0/12
環境	大 腸 菌 数 (CFU/100ml)	41	7	87	0/4	35	8	65	0/12	24	8	50	0/12
項目	N - へ キ サ ン 抽 出 物 質 (mg/l)												
"	全 窒 素 (mg/l)	0.68	0.45	0.88	-/4								
	全 燐 (mg/l)	0.058	0.052	0.067	-/4								
	全 亜 鉛 (mg/l)	0.006	0.006	0.006	0/1			<u> </u>					
	ノニ ル フェ ノー ル (mg/l)			<0.00006	0/1								
	L A S (mg/l)			<0.0006	0/1			<u> </u>	1				
	カト ・ ミ ウ ム (mg/l)							<u> </u>					
	全 シ ア ン (mg/l)			(0.005	0 /0								
	鉛 (mg/l) 六 価 ク ロ ム (mg/l)			<0.005	0/2								
	六 価 ク ロ ム (mg/l) 砒 素 (mg/l)												
	総 水 銀 (mg/l)												
	ア ル キ ル 水 銀 (mg/l)												
	P C B (mg/l)												
健	シ [*] ク ロ ロ メ タ ン (mg/l)												
	四 塩 化 炭 素 (mg/l)												
	1,2- シ [*] ク ロ ロ ェ タ ン (mg/l)												
康	1,1- シ ゚ ク ロ ロ ェ チ レ ン (mg/l)												
	シス -1,2- シ゛クロロエチレン (mg/l)												
	1,1,1- トリクロロエタン (mg/l)												
	1,1,2- トリクロロエタン (mg/l)												
項	トリクロロエチレン (mg/l)												
	テトラクロロエチレン (mg/l)								700000000				
	1,3- シ ゚ ク ロ ロ フ ゜ロ へ ゜ン (mg/l)												
l e	チ ウ ラ ム (mg/l)												
H	シ マ シ ・ ン (mg/l)												
	チオヘ゛ンカルフ゛ (mg/l)												
	へ * ン セ * ン (mg/l)												
	セ レ ン (mg/l)												
	硝酸性窒素及び亜硝酸性窒素(mg/l)	0.40	0.04	0.61	0/4								
	ふっ素 (mg/l)												
	ほ う 素 (mg/l)												
-	1,4- シ * オ キ サ ン (mg/l)			/0.04	/4								
+4	銅 (mg/l) 鉄 (※ 解 性) (mg/l)			<0.04	-/1								
特 殊	鉄 (溶 解 性) (mg/l)												
項目	クロム (mg/l)												
	フェノール類 (mg/l)												
<u> </u>	ノ エ ノ ル 類(mg/l)				L	l		<u> </u>		<u> </u>	L		

	水 域 名						紀 (וו מ					
	地 点 名	紀の	川大橋(A【	補】,生物B【	[補])	藤崎井	堰(A【基】, :	生物B【基】)	(通日)	船戸	(A【基】, 生	物B【基】)(i	通日)
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	m/n	平均	最小値	最大値	m/n
	E P N (mg/l)												
	フ ェ ノ ー ル (mg/l)										-		
	クロロホルム (mg/l)												
	ホルムアルデヒド (mg/l)												
	4-t- オクチルフェノール(mg/l)												
	ア ニ リ ン (mg/l)										-		
	2,4- ジクロロフェノー ル (mg/l)										Vincentonia		
	トランス-1,2-ジクロロエチレン(mg/l)												
	1,2 — ジ ク ロ ロ プ ロ パ ン (mg/l)												
	p — ジ ク ロ ロ ベ ン ゼ ン (mg/l)												
	イ ソ キ サ チ オ ン (mg/l)												
	ダ イ ア ジ ノ ン (mg/l)												
	フェニトロチオン(MEP)(mg/l)												
	イ ソ プ ロ チ オ ラ ン (mg/l)												
	オ キ シ ン 銅 (有 機 銅)(mg/l)												
要	クロロタロニル (TPN) (mg/l)												
監視	, , , , , , , , , , , , , , , , , , ,												
項目	ジ ク ロ ル ボ ス (DDVP)(mg/l)												
"	フェノブ カルブ (BPMC)(mg/l)												
	イプロベンホス(IBP)(mg/l)												
	クロルニトロフェン (CNP)(mg/l)											<u> </u>	
	ト ル エ ン (mg/l)												
	キ シ レ ン (mg/l)											ļ	
	フタル 酸 ジェチル ヘキ シル (mg/l)			/2.22/	/-						-		
	ニ ッ ケ ル (mg/l)			<0.001	-/2							-	
	モ リ ブ デ ン (mg/l)												
	ア ン チ モ ン (mg/l)												
	塩 化 ビ ニ ル モ ノ マ ー (mg/l)												
	エピクロロヒドリン (mg/l) 全 マ ン ガ ン (mg/l)												
	全 マ ン ガ ン (mg/l) ウ ラ ン (mg/l)												
	P F O S % 2(ng/l)												
	P F O A ** 3(ng/l)												
	PFOS及びPFOA(ng/l)	3.6	3.6	3.6	-/1								
	アンモニア性窒素 (mg/l)	0.06	<0.06	0.07	-/4								
	硝 酸 性 窒 素 (mg/l)	0.39	0.04	0.61	-/4								
	亜 硝 酸 性 窒 素 (mg/l)	0.01	<0.01	0.014	-/4								
_	リン酸性リン (mg/l)	0.04	<0.01	0.06	-/4								
その	濁 度 (度)	4	2	8	-/4	2	2	4	-/12	2	2	3	-/12
他の	トリハロメタン 生成 能 (mg/l)												
項	2 — M Ι Β (μ g/l)												
目	ジ オ ス ミ ン (μ mg/l)												
	塩 化 物 イ オ ン (mg/l)	7100	6220	8220	-/4	5	5	5	-/12	5	5	5	-/12
	塩 分 濃 度 (‰)												
	電 気 伝 導 率 (μ S/cm)	20000	18500	21300	-/4	210	118	1224	-/12	130	126	131	-/12
_	u .		*)				4	1	

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値

^{※1} 総測定回数は通日調査を含む。ただし、BOD・CODは、通日調査の日平均値を1回の測定分として、測定回数に加算。

^{※2} ペルフルオロオクタンスルホン酸(PFOS)

^{※3} ペルフルオロオクタン酸(PFOA)

2-10 橋本川・嵯峨谷川・雨天樋川水域水質測定結果

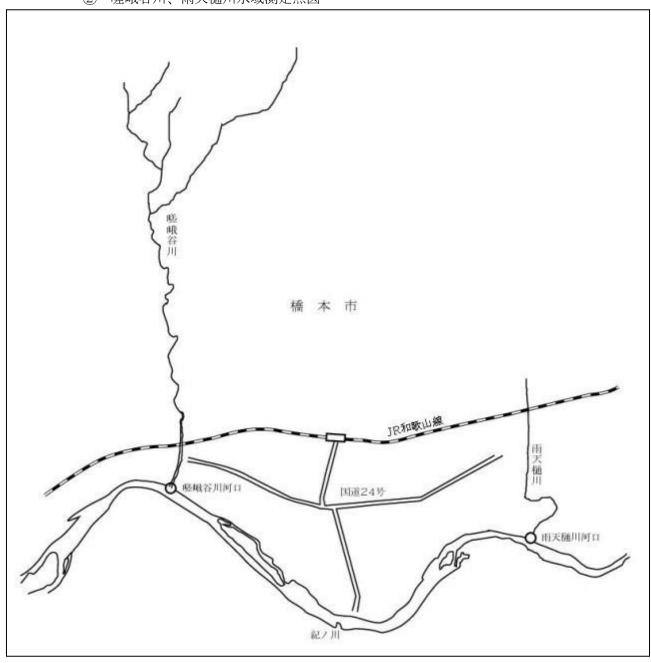
<橋本川>

①のとおり3測定点でそれぞれ年6回の測定を実施した。その結果は③のとおりである。

この河川は、環境基準類型(河川の部)Aをあてはめている。

BODの75%値でみると、環境基準点である橋本では、0.7~mg/1で環境基準値(A:2~mg/1)に適合している。

また、平成 26 年 10 月 10 日付け和歌山県告示第 2598 号で、水生生物保全に係る類型として橋本川(全域)を生物 B 類型に指定した。


水生生物保全に係る環境基準項目である全亜鉛【基準値(生物 B: 0.03 mg/L)】、ノニルフェノール【基準値(生物 B: 0.002 mg/L)】、LAS【基準値(生物 B: 0.05 mg/L)】の平均値でみると、全ての環境基準点で環境基準値に適合している。

<嵯峨谷川・雨天樋川>

②のとおり2測定点でそれぞれ年6回の測定を実施した。その結果は③のとおりである。

① 橋本川水域測定点図

③ 橋本川·嵯峨谷川·雨天樋川水域水質測定結果一覧

	水 域 名						橋っ	本 川					
	地 点 名	紀	見橋(A【補】	I,生物B【裤	前】)	1	原田(A【補	】,生物B【補	i])	ŧ	喬本(A【基】	生物B【基】)
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		7.5	8.0	0/6		7.6	8.1	0/6		7.7	9.2	1/6
	D O (mg/l)	10	8.7	12	0/6	10	8.8	12	0/6	11	8.7	14	0/6
		(0.6)				(0.7)				(0.7)			
	B O D (mg/l)	0.6	<0.5	0.7	0/6	0.6	<0.5	0.7	0/6	0.7	0.6	1.1	0/6
生	C O D (mg/l)	2.0	0.9	3.5	-/6	2.2	1.2	4.0	-/6	2.6	1.5	4.8	-/6
活	S S (mg/l)	1	<1	1	0/6	1	<1	2	0/6	2	<1	6	0/6
環境	大 腸 菌 数 (CFU/100ml)	200	29	820	1/6	490	88	1100	4/6	110	34	300	0/6
項	N - へ キ サ ン 抽 出 物 質 (mg/l)												
目	全 窒 素 (mg/l)	0.79	0.42	1.70	-/6	0.93	0.71	1.60	-/6	0.97	0.61	1.7	-/6
	全 燐 (mg/l)	0.042	0.031	0.068	-/6	0.062	0.046	0.10	-/6	0.073	0.055	0.12	-/6
	全 亜 鉛 (mg/l)	0.002	0.001	0.004	0/6	0.002	<0.001	0.002	0/6	0.002	<0.001	0.002	0/6
	ノニ ル フェ ノー ル (mg/l)											<0.0006	0/1
	L A S (mg/l)									0.0008	0.0008	0.0008	0/1
	カト゜ミウム (mg/l)											<0.0003	0/4
	全 シ ア ン (mg/l)											<0.1	0/4
	鉛 (mg/l)											<0.005	0/4
	六 価 ク ロ ム (mg/l)											<0.01	0/4
	砒 素 (mg/l)									0.001	<0.001	0.001	0/4
	総 水 銀 (mg/l)											<0.0005	0/4
	アルキル水 銀 (mg/l)												
健	P C B (mg/l)											<0.0005	0/4
	シ [*] ク ロ ロ メ タ ン (mg/l)											<0.002	0/4
	四塩化炭素(mg/l)											<0.0002	0/4
	1,2- シ											<0.0004	0/4
康	1,1- シ クロロエチレン (mg/l)											<0.002	0/4
	シス -1,2- シ゛クロロエチレン (mg/l)											<0.004	0/4
	1,1,1-トリクロロエタン (mg/l)									-		<0.01	0/4
項	1,1,2-トリクロロエタン (mg/l)											<0.0006	0/4
炽	トリクロロエチレン (mg/l)									-		<0.001	0/4
	テトラクロロエチレン (mg/l)											<0.001	0/4
	1,3- シ											<0.0002	0/4
目												<0.0006 <0.0003	0/4
	ラマッ フ (mg/l) チオヘ゜ンカルフ゜(mg/l)											<0.0003	0/4
	+ 1 へ フ ガ ル ノ (mg/l) へ ・ ン セ ・ ン (mg/l)											<0.002	0/4
	セ レ ン (mg/l)											<0.001	0/4
	で レ ノ (mg/l) 硝酸性窒素及び亜硝酸性窒素(mg/l)									0.66	0.47	1.00	0/4
	小 カー 素 (mg/l)									0.00	<0.1	0.1	0/4
	ほう素 (mg/l)									ļ	νο.1	<0.1	0/4
	1,4- シ * オ キ サ ン (mg/l)											<0.005	0/4
	銅 (mg/l)											.5.550	-, 1
特	鉄 (溶 解 性) (mg/l)												
殊	マンカ・ン (溶解性) (mg/l)												
項目	7 П Д (mg/l)												
	フェノール類 (mg/l)												
			<u> </u>	1			8	1		1	1		

	水 域 名						橋	本 川					
	地 点 名	紀	!見橋(A【補】	,生物B【衤	甫】)	/]	原田(A【補], 生物B【補	i])	1	喬本(A【基】	生物B【基】)
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	E P N (mg/l)							-					
	フ ェ ノ ー ル (mg/l)											<0.001	-/1
	クロロホルム (mg/l)							Village				<0.001	-/1
	ホルムアルデヒド (mg/l)							***************************************				<0.008	-/1
	4-t- オクチルフェノール (mg/l)							***************************************					
	ア ニ リ ン (mg/l)												
	2,4- ジクロロフェノー ル (mg/l)												
	トランス-1,2-ジクロロエチレン(mg/l)												
	1,2 — ジ ク ロ ロ プ ロ パ ン (mg/l)												
	p — ジ ク ロ ロ ベ ン ゼ ン (mg/l)												
	イ ソ キ サ チ オ ン (mg/l)												
	ダ イ ア ジ ノ ン (mg/l)												
	フェニトロチオン(MEP)(mg/l)												
	イソプロチオラン (mg/l)												
	オキシン銅(有機銅)(mg/l)												
要	クロロタロニル (TPN) (mg/l)												
監視	プ ロ ピ ザ ミ ド (mg/l)												
項	ジ ク ロ ル ボ ス (DDVP)(mg/l)												
目	フェノブカルブ (BPMC)(mg/l)												
	イプロベンホス(IBP)(mg/l)												
	クロルニトロフェン(CNP)(mg/l)												
	ト ル エ ン (mg/l)												
	キ シ レ ン (mg/l)												
	フタル 酸 ジェチル ヘキシル(mg/l)					-							
	ニ ッ ケ ル (mg/l)												
	モ リ ブ デ ン (mg/l)												
	ア ン チ モ ン (mg/l)												
	塩 化 ビニ ル モ ノマ ー (mg/l)												
	エピクロロヒドリン (mg/l)							-					
	全 マ ン ガ ン (mg/l)												
	ウ ラ ン (mg/l) P F O S ※ 2(ng/l)									1.0		1.0	/1
										1.8		1.8	-/1
	P F O A ※ 3(ng/l) P F O S 及 び P F O A (ng/l)									3.8		3.8	-/1 -/1
-	アンモニア性窒素 (mg/l)									5.6	<u> </u>	5.6	-/1
	が									0.65	0.46	1.00	-/4
	明									0.00	0.40	<0.01	-/4
	里 明 酸 性 星 条 (mg/l)											\0.01	/4
その	選 度 (度)												
他	メリハロメタン 生成 能 (mg/l)												
の項	2 - M I B (μ g/l)												
目	ジ オ ス ミ ン (μ mg/l)												
	<u>塩化物イオン (mg/l)</u>									5	4	6	-/4
	塩 分 濃 度 (‰)									<u> </u>	•		
	電 気 伝 導 率 (μ S/cm)	180	120	230	-/6	200	130	250	-/6	200	140	250	-/6
	5 Λ IA + + (μ 6/6III/	.00			, ,			1	, ,		1 .10	_55	, ,

(備考) ※1 x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 ※2 ペルフルオロオクタンスルホン酸(PFOS) ※3 ペルフルオロオクタン酸(PFOA)

	水 域 名			谷川			雨天	———— 樋川	
	地 点 名			J口(-, -)			雨天樋川河		
測	測 定 値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		7.7	8.5	-/6		7.6	9.9	-/6
	D O (mg/l)	11	8.9	15	-/6	11	7.0	16	-/6
		(0.9)				(11)			
	B O D (mg/l)	0.7	<0.5	0.9	-/6	5.6	1.5	12.0	-/6
生	C O D (mg/l)	3.4	2	5.1	-/6	10.0	7.2	18.0	-/6
活	S S (mg/l)	2	<1	5	-/6	4	<1	10	-/6
環境	大 腸 菌 数 (CFU/100ml)	180	65	340	-/6	530	66	1200	-/6
項目	N - へ キ サ ン 抽 出 物 質 (mg/l)								
	全 窒 素 (mg/l)	1.2	0.85	1.8	-/6	2.5	0.77	8.7	-/6
	全 燐 (mg/l)	0.052	0.037	0.075	-/6	0.16	0.084	0.20	-/6
	全 亜 鉛 (mg/l)	0.002	<0.001	0.003	-/6	0.071	0.008	0.34	-/6
	ノニルフェノール (mg/l)								
	L A S (mg/l)								
	カト゛ミウム (mg/l)			<0.0003	0/4			<0.0003	0/4
	全 シ ア ン (mg/l)			<0.1	0/4			<0.1	0/4
	鉛 (mg/l)			<0.005	0/4			<0.005	0/4
	六 価 ク ロ ム (mg/l)		(0:	<0.01	0/4	0.57	(0.55)	<0.01	0/4
	砒 素 (mg/l)	0.001	<0.001	0.001	0/4	0.001	<0.001	0.001	0/4
	総 水 銀 (mg/l)			<0.0005	0/4			<0.0005	0/4
	アルキル水 銀 (mg/l)			(0.0005	0.11			(0.000	0.11
健	P C B (mg/l)			<0.0005	0/4			<0.0005	0/4
	/ / L L / / / (IIIg/I)			<0.002	0/4			<0.002	0/4
	四 塩 化 炭 素 (mg/l) 1,2- シ クロロエタン (mg/l)			<0.0002	0/4			<0.0002	0/4
-	1,2- ソ ク Ц Ц エ ダ ン (mg/l) 1,1- シ			<0.0004 <0.002	0/4			<0.0004 <0.002	0/4
康	「, l = ク			<0.002	0/4			<0.002	0/4
	1,1,1- トリクロロエタン (mg/l)			<0.004	0/4			<0.01	0/4
	1,1,2- トリクロロエタン (mg/l)			<0.0006	0/4			<0.0006	0/4
項	トリクロロエチレン (mg/l)			<0.001	0/4			<0.001	0/4
	テトラクロロエチレン (mg/l)			<0.001	0/4			<0.001	0/4
	1,3- シ			<0.0002	0/4			<0.0002	0/4
	チ ウ ラ ム (mg/l)			<0.0006	0/4			<0.0006	0/4
目	シマシ ・ ン (mg/l)			<0.0003	0/4			<0.0003	0/4
	チオヘ゜ンカルフ゜(mg/l)			<0.002	0/4			<0.002	0/4
	へ ・ ン セ ・ ン (mg/l)			<0.001	0/4			<0.001	0/4
	セ レ ン (mg/l)			<0.001	0/4			<0.001	0/4
	硝酸性窒素及び亜硝酸性窒素(mg/l)	0.88	0.64	1.10	0/4	0.56	0.25	0.96	0/4
	ふ っ 素 (mg/l)	0.1	<0.1	0.1	0/4	0.1	<0.1	0.1	0/4
	ほ う 素 (mg/l)			<0.1	0/4			<0.1	0/4
	1,4- シ ・ オ キ サ ン (mg/l)			<0.005	0/4			<0.005	0/4
	銅 (mg/l)								
特	鉄 (溶 解 性) (mg/l)								
殊項	マンカ゛ン(溶 解 性) (mg/l)								
目	ク ロ ム (mg/l)								
	フ ェ ノ ー ル 類 (mg/l)								

水 域 名		嵯峨	谷川			雨天	樋川	
地 点 名		嵯峨谷川河	Jロ(一, 一)	1		雨天樋川河	Jロ(-, -)	
測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
E P N (mg/l)								
フ ェ ノ ー ル (mg/l)								
クロロホルム (mg/l)								
ホルムアルデヒド (mg/l)								
4-t- オクチルフェノール (mg/l)								
ア ニ リ ン (mg/l)								
2,4- ジクロロフェノー ル (mg/l)								
トランス-1,2-ジクロロエチレン(mg/l)								
1,2 — ジクロロプロパン(mg/l)								
p ー ジ ク ロ ロ ベ ン ゼ ン (mg/l)								
イ ソ キ サ チ オ ン (mg/l)								
ダ イ ア ジ ノ ン (mg/l)								
フェニトロチオン(MEP)(mg/l)								
イソプロチオラン (mg/l)								
オキシン銅(有機銅)(mg/l)								
要 クロロタロニル(TPN)(mg/l)								
監 プロピザミド (mg/l)								
視								
目 フェノブカルブ(BPMC)(mg/l)								
イプロベンホス(IBP)(mg/l)								
クロルニトロフェン(CNP)(mg/l)								
ト ル エ ン (mg/l)								
キ シ レ ン (mg/l)								
フタル 酸 ジェチル ヘキ シル(mg/l)								
ニ ッ ケ ル (mg/l)								
モ リ ブ デ ン (mg/l)								
ア ン チ モ ン (mg/l)								
塩 化 ビニ ル モ ノマ ー (mg/l)								
エピクロロヒドリン (mg/l)								
全 マ ン ガ ン (mg/l)								
ウ ラ ン (mg/l)								
P F O S ※ 2(ng/l)								
P F O A ※ 3(ng/l)								
PFOS及びPFOA(ng/l)								
ア ン モ ニ ア 性 窒 素 (mg/l)								
硝 酸 性 窒 素 (mg/l)	0.88	0.63	1.10	-/4	0.54	0.24	0.9	-/4
亜 硝 酸 性 窒 素 (mg/l)	0.01	<0.01	0.01	-/4	0.02	<0.01	0.03	-/4
リン酸性リン (mg/l)								
の 選 度 (度)								
他 トリハロメタン 生成 能 (mg/l)								
項 2 — M I B (μ g/l)								
ジ オ ス ミ ン (μ mg/l)								
塩 化 物 イ オ ン (mg/l)	5	4	6	-/4	14	7	30	-/4
塩分濃度(‰)								
電 気 伝 導 率 (μ S/cm)	160	130	190	-/6	230	110	400	-/6

(備考) ※1 x:環境基準に適合しない日数 y:総測定日数 ()内は75%値

※2 ペルフルオロオクタンスルホン酸(PFOS)

※3 ペルフルオロオクタン酸(PFOA)

2-11 桂谷川・貴志川・柘榴川水域水質測定結果

<桂谷川>

①のとおり1測定点で年6回の測定を実施した。その結果は、③のとおりである。

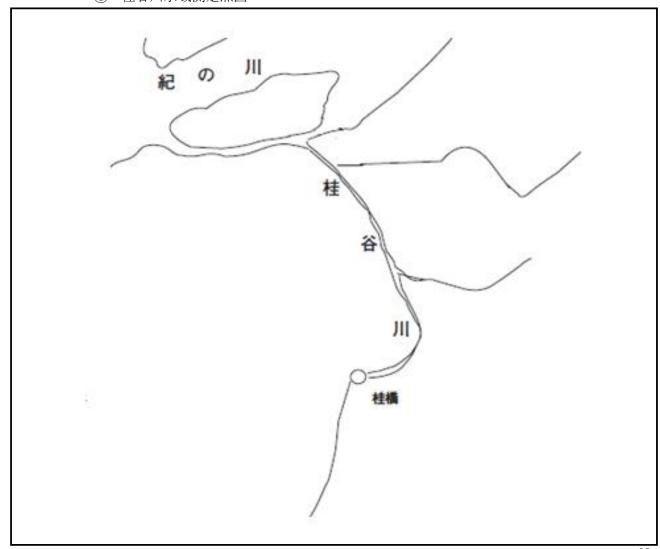
この河川は類型指定をしていないが、廃止鉱山の影響をみるため監視を継続している。

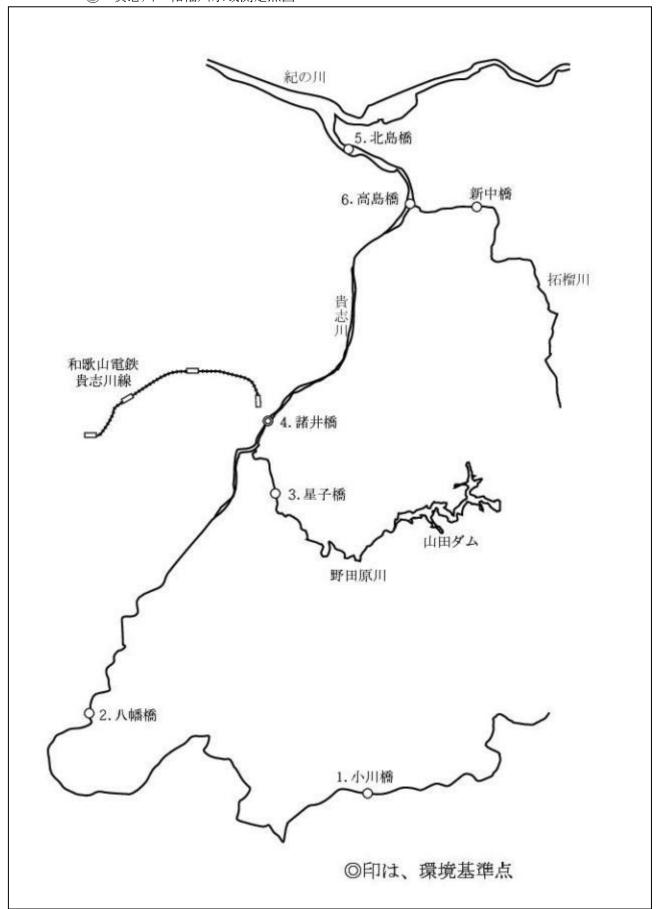
<貴志川>

②のとおり、高島橋で年4回、その他の5測定点で年6回の測定を実施した。その結果は、③のとおりである。

この河川は、環境基準類型(河川の部)Aをあてはめている。

BOD75%値でみると、環境基準点である諸井橋では、0.7~mg/1で、環境基準値(A:2~mg/1)に適合している。


また、平成 26 年 10 月 10 日付け和歌山県告示第 2598 号で、水生生物保全に係る類型として、 貴志川 (小川橋から上流の水域) を生物 A 類型に、貴志川 (紀の川合流点から小川橋までの水域) を生物 B 類型に指定した。


水生生物保全に係る環境基準項目である全亜鉛【基準値(生物 A, B: 0.03 mg/L)】、ノニルフェノール【基準値(生物 A: 0.001 mg/L、生物 B: 0.002 mg/L)】、LAS【基準値(生物 A: 0.03 mg/L、生物 B: 0.05 mg/L)】の平均値でみると、全ての環境基準点で環境基準値に適合している。

<柘榴川>

②のとおり、1 測定点で年6回の測定を実施した。その結果は、③のとおりである。

① 桂谷川水域測定点図

③ 桂谷川·貴志川·柘榴川水域水質測定結果一覧

	水 域 名		桂 名	川					貴	志川			
	地 点 名		桂橋(-, -)		小	川橋(A【補], 生物A【基	[])	/\	、幡橋(A【補	】,生物B【補	j])
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		7.2	7.8	-/6		7.7	8.3	0/6		7.7	8.5	0/6
	D O (mg/l)	10	8.7	13	-/6	10	9.2	13	0/6	10	9	13	0/6
		(0.9)				(8.0)				(8.0)			
	B O D (mg/l)	0.7	<0.5	1.1	-/6	0.7	<0.5	0.9	0/6	0.7	<0.5	1.0	0/6
生	C O D (mg/l)	1.8	0.9	3.1	-/6	1.6	0.9	2.9	-/6	1.8	1.0	3.2	-/6
活環	S S (mg/l)	6	3	13	-/6	2	<1	3	0/6	2	<1	5	0/6
境	大陽菌数(CFU/100ml)	15	1	60	-/6	62	12	170	0/6	130	49	260	0/6
項目	N - ヘ キ サ ン 抽 出 物 質 (mg/l)				/-								
	全 窒 素 (mg/l) 全 燐 (mg/l)	0.009	1.2	3.5 0.016	-/6 -/6	0.46	0.31	0.58	-/6 -/6	0.58	0.43	0.73 0.049	-/6 -/6
-	全 燐 (mg/l) 全 亜 鉛 (mg/l)	0.009	<0.003 0.087	0.016	-/6 -/6	0.021	<0.008	0.045	0/6	0.023	0.011 <0.001	0.049	0/6
	エ 亜 弱 (mg/i) ノニ ル フェ ノー ル (mg/l)	0.20	0.067	0.20	-/ 0	0.001	\0.001	<0.0006	0/0	0.002	\0.001	0.003	0/0
	L A S (mg/l)							<0.0006	0/1				
	カト * ミウム (mg/l)							15.5000	5/ 1				
	全 シ ァ ン (mg/l)												
	鉛 (mg/l)												
	六 価 ク ロ ム (mg/l)												
	砒 素 (mg/l)												
	総 水 銀 (mg/l)												
	アルキル水銀 (mg/l)												
健	P C B (mg/l)												
	シ [*] ク ロ ロ メ タ ン (mg/l)												
	四塩化炭素(mg/l)												
	1,2- シ												
康	1,1- シ クロロエチレン (mg/l)										ļ		
	シス -1,2- シ゛クロロエチレン (mg/l)												
	1,1,1- ト リ ク ロ ロ エ タ ン (mg/l)												
項	1,1,2- トリクロロエタン (mg/l) トリクロロエチレン (mg/l)												
	テトラクロロエチレン (mg/l)												
	1,3- シ カロロフ ロへ ン (mg/l)												
	チ ウ ラ ム (mg/l)												
目													
	チオへ゜ンカルフ゜(mg/l)												
	へ ・ ソ セ ・ ソ (mg/l)												
	セ レ ン (mg/l)												
	硝 酸 性 窒 素 及 び 亜 硝 酸 性 窒 素 (mg/l)												
	ふ っ 素 (mg/l)												
	ほ う 素 (mg/l)												
	1,4- シ * オ キ サ ン (mg/l)												
	銅 (mg/l)	0.17	0.08	0.28	-/6								
特殊													
項	マンカ゜ン (溶解性) (mg/l)												
目	クロム (mg/l)												
	フ ェ ノ ー ル 類 (mg/l)												

	水 域 名		桂名	9 川					貴 7	志 川			
	地 点 名		桂橋(-, -)		小	川橋(A【補	】,生物A【基	[])	/	、幡橋(A【補], 生物B【補])
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	E P N (mg/l)												
	フ ェ ノ ー ル (mg/l)							<0.001	-/1				
	クロロホルム (mg/l)							<0.001	-/1				
	ホルムアルデヒド (mg/l)							<0.008	-/1				
	4-t- オクチルフェノール(mg/l)												
	ア ニ リ ン (mg/l)												
	2,4- ジクロロフェノー ル (mg/l)												
	トランス-1,2-ジクロロエチレン(mg/l)												
	1,2 — ジ クロロプロパン(mg/l)												
	p ー ジ ク ロ ロ ベ ン ゼ ン (mg/l)												
	イ ソ キ サ チ オ ン (mg/l)												
	ダ イ ア ジ ノ ン (mg/l)												
	フェニトロチオン(MEP)(mg/l)												
	イ ソ プ ロ チ オ ラ ン (mg/l)												
	オ キ シ ン 銅 (有 機 銅)(mg/l)												
要	クロロタロニル(TPN)(mg/l)												
監視	プ ロ ピ ザ ミ ド (mg/l)												
項	ジ ク ロ ル ボ ス (DDVP)(mg/l)												
目	フェノブカルブ (BPMC)(mg/l)												
	イプロベンホス(IBP)(mg/l)												
	クロルニトロフェン(CNP)(mg/l)												
	ト ル エ ン (mg/l)												
	キ シ レ ン (mg/l)												
	フタル 酸 ジェチル ヘキシル (mg/l)												
	ニ ッ ケ ル (mg/l)												
	モ リ ブ デ ン (mg/l)												
	ア ン チ モ ン (mg/l)												
	塩 化 ビニ ルモノマー (mg/l)												
	エピクロロヒドリン (mg/l)												
	全 マ ン ガ ン (mg/l)												
	ウ ラ ン (mg/l)												
	P F O S ※ 2(ng/l)												
	P F O A ※ 3(ng/l)												
	PFOS及びPFOA(ng/l)												
	ア ン モ ニ ア 性 窒 素 (mg/l)												
	硝 酸 性 窒 素 (mg/l)												
	亜 硝 酸 性 窒 素 (mg/l)												
そ	リ ン 酸 性 リ ン (mg/l)												
の	濁 度 (度)												
他 の	トリハロメタン 生成 能 (mg/l)												
項目	2 - M Ι Β (μ g/l)												
-	ジ オ ス ミ ン (μ mg/l)												
	塩 化 物 イ オ ン (mg/l)												
	塩 分 濃 度 (‰)												
	電 気 伝 導 率 (μ S/cm)	560	380	680	-/6	110	89	140	-/6	120	93	150	-/6

(備考) ※1 x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 ※2 ペルフルオロオクタンスルホン酸(PFOS) ※3 ペルフルオロオクタン酸(PFOA)

	水 域 名						貴 ;	志 川					
	地 点 名	星	.子橋(A【補]	】,生物B【補	i])	諸	拼橋(A【基	】,生物B【基])	北	島橋(A【補	】,生物B【補	i])
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		7.8	8.3	0/6		7.7	8.0	0/6		7.5	7.8	0/6
	D O (mg/l)	10	9	13	0/6	10	8.6	13	0/6	9.6	8.5	11	0/6
		(1)				(0.7)				(1)			
	B O D (mg/l)	1.0	<0.5	2.2	1/6	0.6	<0.5	0.8	0/6	0.8	<0.5	1.0	0/6
生	C O D (mg/l)	3.6	2.4	5.2	-/6	2.2	1.4	3.4	-/6	2.6	1.4	4.1	-/6
活	S S (mg/l)	2	<1	4	0/6	2	<1	6	0/6	4	1	9	0/6
環境	大 腸 菌 数 (CFU/100ml)	270	34	690	2/6	150	33	540	1/6	180	29	530	1/6
項目	N - へ キ サ ン 抽 出 物 質 (mg/l)												
-	全 窒 素 (mg/l)	1.3	0.98	2.3	-/6	0.63	0.48	0.74	-/6	0.85	0.63	1.1	-/6
	全 燐 (mg/l)	0.028	0.01	0.063	-/6	0.025	0.012	0.055	-/6	0.054	0.032	0.1	-/6
	全 亜 鉛 (mg/l)	0.002	<0.001	0.005	0/6	0.001	<0.001	0.002	0/6	0.004	0.001	0.014	0/6
	ノニルフェノール (mg/l)							<0.00006	0/1				
	L A S (mg/l)					0.0008	0.0008	0.0008	0/1				
	カト * ミウム (mg/l)							<0.0003	0/4				
	全 シ ア ン (mg/l) 鉛 (mg/l)							<0.1 <0.005	0/4				
	対 (mg/l) 六 価 ク ロ ム (mg/l)							<0.003	0/4				
								<0.001	0/4				
	総 水 銀 (mg/l)							<0.0005	0/4				
	アルキル水 銀 (mg/l)												
<i>17</i> -₽-	P C B (mg/l)							<0.0005	0/4				
健	シ [*] ク ロ ロ メ タ ン (mg/l)							<0.002	0/4				
	四塩化炭素(mg/l)							<0.0002	0/4				
	1,2- シ [*] クロロエタン (mg/l)							<0.0004	0/4				
康	1,1- シ゜クロロェチレン (mg/l)							<0.002	0/4				
	シス -1,2- シ゛クロロエチレン (mg/l)							<0.004	0/4				
	1,1,1- トリクロロエタン (mg/l)							<0.01	0/4				
	1,1,2- トリクロロエタン (mg/l)							<0.0006	0/4				
項	トリクロロエチレン (mg/l)							<0.001	0/4				
	テトラクロロエチレン (mg/l)							<0.001	0/4				
	1,3- シ * クロロフ ° ロヘ ° ン (mg/l)							<0.0002	0/4				
目	f j j λ (mg/l)							<0.0006	0/4				
	シマシン (mg/l)							<0.0003	0/4				
	チオヘ゜ンカルフ゜(mg/l) ヘ゜ンセ゜ン (mg/l)							<0.002	0/4				
								<0.001	0/4				
	せ レ ン (mg/l) 硝酸性窒素及び亜硝酸性窒素(mg/l)					0.44	0.36	<0.001 0.60	0/4				
	前版性 至素 及び 里 前版性 至素 (mg/l) ふ っ 素 (mg/l)					0.44	0.00	<0.1	0/4				
	ほ う 素 (mg/l)							<0.1	0/4				
-	1,4- シ * オ キ サ ン (mg/l)							<0.005	0/4				
	銅 (mg/l)												
特	鉄 (溶 解 性) (mg/l)												
殊項	マンカ [°] ン(溶解性) (mg/l)												
目	7 П Д (mg/l)												
	フェノール類 (mg/l)												
_	IL						9						

	水 域 名						貴	5 川					
	地 点 名	星		】,生物B【補	i])	諸	#持橋(A【基	】,生物B【基	[])	北	,島橋(A【補	】,生物B【補	j])
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	E P N (mg/l)												
	フ ェ ノ ー ル (mg/l)							<0.001	-/1				
	クロロホルム (mg/l)							<0.001	-/1				
	ホルムアルデヒド (mg/l)							<0.008	-/1				
	4-t- オクチルフェノール(mg/l)												
	ア ニ リ ン (mg/l)												
	2,4- ジ ク ロ ロ フ ェ ノ ー ル (mg/l)												
	トランス-1,2-ジクロロエチレン(mg/l)												
	1,2 — ジ クロロプロパン(mg/l)												
	p ー ジ ク ロ ロ ベ ン ゼ ン (mg/l)												
	イ ソ キ サ チ オ ン (mg/l)												
	ダ イ ア ジ ノ ン (mg/l)												
	フェニトロチオン(MEP)(mg/l)												
	イソプロチオラン (mg/l)												
	オキシン銅(有機銅)(mg/l)												
要	クロロタロニル(TPN)(mg/l)												
監	プ ロ ピ ザ ミ ド (mg/l)												
視項	ジ ク ロ ル ボ ス (DDVP)(mg/l)												
目	フェノブ カル ブ (BPMC)(mg/l)												
	イプロベンホス(IBP)(mg/l)												
	クロルニトロフェン (CNP)(mg/l)												
	ト ル エ ン (mg/l)												
	キ シ レ ン (mg/l)												
	フタル 酸 ジェチル ヘキシル(mg/l)												
	ニ ッ ケ ル (mg/l)												
	モ リ ブ デ ン (mg/l)												
	ア ン チ モ ン (mg/l)												
	塩 化 ビ ニ ル モ ノマ ー (mg/l)												
	ェピクロロヒドリン (mg/l)												
	全 マ ン ガ ン (mg/l)												
	ウ ラ ン (mg/l)												
	P F O S ※ 2(ng/l)					<0.1		1.8	-/1				
	P F O A 🔆 3(ng/l)					<0.1		0.8	-/1				
	PFOS及びPFOA(ng/l)					<0.9		<0.9	-/1				
	ア ン モ ニ ア 性 窒 素 (mg/l)												
	硝 酸 性 窒 素 (mg/l)					0.44	0.36	0.60	-/4				
	亜 硝 酸 性 窒 素 (mg/l)							<0.01	-/4				
2	リ ン 酸 性 リ ン (mg/l)												
その	濁 度 (度)												
他の	トリハロメタン 生成 能 (mg/l)												
項	2 — M Ι Β (μ g/l)												
目	ジ オ ス ミ ン (μ mg/l)												
	塩 化 物 イ オ ン (mg/l)					4	3	6	-/4				
	塩 分 濃 度 (‰)												
	電 気 伝 導 率 (μ S/cm)	180	150	210	-/6	120	94	160	-/6	150	100	200	-/6
_	11	<u> </u>	1			·					1		

(備考) ※1 x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 ※2 ペルフルオロオクタンスルホン酸(PFOS)

※3 ペルフルオロオクタン酸(PFOA)

	水 域 名		貴 ;	志 川			柘村	留 川	
	地 点 名	高	島橋(A【補	】,生物B【補	i])		新中橋	(-, -)	
測	測 定 値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		7.7	8.0	0/4		7.4	7.8	-/6
	D O (mg/l)	10	9.5	11	0/4	10	8.8	13	-/6
		(1.3)				(1.3)			
	B O D (mg/l)	1.1	0.5	1.8	0/4	1.0	0.5	1.4	-/6
生	C O D (mg/l)	2.8	2	3.6	-/4	2.7	1.7	3.7	-/6
活環	S S (mg/l)	4	2	5	0/4	4	2	5	-/6
境	大 腸 菌 数 (CFU/100ml)	100	30	200	0/4	250	100	470	-/6
項目	N - へ キ サ ン 抽 出 物 質 (mg/l)								
	全 窒 素 (mg/l)	0.86	0.7	0.98	-/4	1.3	0.88	1.9	-/6
	全 燐 (mg/l)	0.067	0.047	0.1	-/4	0.041	0.032	0.058	-/6
	全 亜 鉛 (mg/l)	0.003	0.003	0.003	0/1	0.004	0.002	0.006	-/6
	ノニルフェノール (mg/l)	0.0011	0.0011	<0.00006	0/1				
\vdash	L A S (mg/l)	0.0014	0.0014	0.0014	0/1			/0.0000	0/4
	カト゛ミウム (mg/l) 全 シ ア ン (mg/l)							<0.0003 <0.1	0/4
								<0.005	0/4
	鉛 (mg/l) 六 価 ク ロ ム (mg/l)							<0.003	0/4
	<u> </u>							<0.001	0/4
	総 水 銀 (mg/l)							<0.0005	0/4
	アルキル水銀 (mg/l)							\0.0000	0/ 4
	P C B (mg/l)							<0.0005	0/4
健	シ * ク ロ ロ メ タ ン (mg/l)							<0.002	0/4
	四塩化炭素(mg/l)							<0.0002	0/4
	1,2- シ * クロロエタン (mg/l)							<0.0004	0/4
康	1,1- シ゛クロロエチレン (mg/l)							<0.002	0/4
	シス -1,2- シ゛クロロエチレン (mg/l)							<0.004	0/4
	1,1,1-トリクロロエタン (mg/l)							<0.01	0/4
	1,1,2-トリクロロェタン (mg/l)							<0.0006	0/4
項	トリクロロエチレン (mg/l)							<0.001	0/4
	テトラクロロエチレン (mg/l)							<0.001	0/4
	1,3- シ゛クロロフ゜ロヘ゜ン (mg/l)							<0.0002	0/4
	チ ウ ラ ム (mg/l)							<0.0006	0/4
目	シマシ゛ン (mg/l)							<0.0003	0/4
	チ オ へ ゛ン カ ル フ ゛ (mg/l)							<0.002	0/4
	へ * ソ セ * ソ (mg/l)							<0.001	0/4
	セ レ ン (mg/l)							<0.001	0/4
	硝酸性窒素及び亜硝酸性窒素 (mg/l)	0.65	0.45	0.81	0/4	1.0	0.71	1.4	0/4
	ふ っ 素 (mg/l)							<0.1	0/4
	ほ う 素 (mg/l)							<0.1	0/4
	1,4- シ * オ キ サ ン (mg/l)							<0.005	0/4
	銅 (mg/l)			<0.04	-/1				
特殊	鉄 (溶 解 性) (mg/l)			<0.05	-/1				
項	マンカ°ン(溶解性)(mg/l)								
目	7 □ Д (mg/l)								
	フ ェ ノ ー ル 類 (mg/l)								

水 域 名		貴	. JII			柘栺	留川	
地 点 名	高	島橋(A【補】	, 生物B【補	i])		新中橋	(-, -)	
測定値	平均	最小値	最大値	x/y	平均	最小値	最大値	х/у
E P N (mg/l)								
フェノール (mg/l)								
クロロホルム (mg/l)								
ホルムアルデヒド (mg/l)								
4-t- オクチルフェノール (mg/l)								
ア ニ リ ン (mg/l)								
2,4- ジクロロフェノー ル (mg/l)								
トランス-1,2-ジクロロエチレン(mg/l)								
1,2 — ジ ク ロ ロ プ ロ パ ン (mg/l)								
p — ジ ク ロ ロ ベ ン ゼ ン (mg/l)								
イ ソ キ サ チ オ ン (mg/l)								
ダ イ ア ジ ノ ン (mg/l)								
フェニトロチオン (MEP) (mg/l)								
イソプロチオラン (mg/l)								
オ キ シ ン 銅 (有 機 銅) (mg/l)								
要 クロロタロニル(TPN)(mg/l)								
監 プロピザミド (mg/l)								
視 項 ジ ク ロ ル ボ ス (DDVP)(mg/l)								
目 フェノブカルブ (BPMC)(mg/l)								
イプロベンホス(IBP)(mg/I)								
クロルニトロフェン (CNP)(mg/l)								
ト ル エ ン (mg/l)								
キ シ レ ン (mg/l)								
フタル 酸 ジェチ ル ヘキ シ ル (mg/l)								
ニ ッ ケ ル (mg/l)								
モ リ ブ デ ン (mg/l)								
ア ン チ モ ン (mg/l)								
塩 化 ビ ニ ル モ ノ マ ー (mg/l)								
エピクロロヒドリン (mg/l)								
全 マ ン ガ ン (mg/l)								
ウ ラ ン (mg/l)								
P F O S ※ 2(ng/l)								
P F O A ※ 3(ng/l)								
PFOS及びPFOA(ng/I)								
ア ン モ ニ ア 性 窒 素 (mg/l)			<0.06	-/4				
硝酸性窒素(mg/l)	0.65	0.45	0.80	-/4	1.00	0.70	1.4	-/4
亜 硝 酸 性 窒 素 (mg/l)	0.010	<0.01	0.011	-/4	0.02	<0.01	0.04	-/4
T T T T T T T T T T	0.05	0.03	0.08	-/4				
の 濁 度 (度)	2	1	3	-/4				
の ドリハロメダン 生成 能 (mg/l)	0.037	0.028	0.048	-/3				
項 2 - M I B (μ g/l)	0.0010	/0.00 <u>-</u>	0.000	/6				
ジ オ ス ミ ン (μ mg/l)	0.0013	<0.005	0.002	-/3		_		/4
塩化物イオン(mg/l)	8	6	10	-/4	5	4	6	-/4
塩分濃度(‰)	100	100	170	/4	150	100	170	/6
電 気 伝 導 率 (μ S/cm)	160	129	179	-/4	150	120	170	-/6

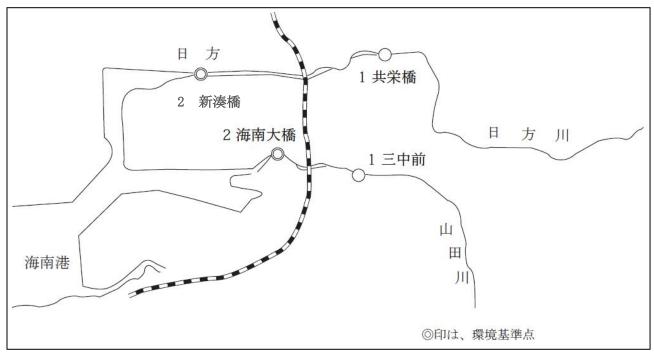
(備考) ※1 x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 ※2 ペルフルオロオクタンスルホン酸(PFOS)

※3 ペルフルオロオクタン酸(PFOA)

2-12 日方川・山田川(海南)水域水質測定結果

<日方川>

①のとおり2測定点でそれぞれ年6回の測定を実施した。その結果は、②のとおりである。 この河川は、環境基準類型(河川の部) Cをあてはめている。


BOD75%値でみると、日方川の環境基準点である新湊橋では、1.2 mg/1 で、環境基準値 (C:5 mg/1) に適合している。

<山田川(海南)>

①のとおり、2 測定点でそれぞれ年 6 回の測定を実施した。その結果は、②のとおりである。 この河川は、環境基準類型(河川の部)Dをあてはめている。

BOD75%値でみると、山田川の環境基準点である海南大橋では、1.9 mg/1 で、環境基準値 (D:8 mg/1) に適合している。

① 日方川·山田川(海南)水域測定点図

② 日方川·山田川(海南)水域水質測定結果一覧

	水 域 名				日	方 川			
	地 点 名		共栄橋(C	【補】, 一)			新湊橋(C	【基】, 一)	
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		7.4	8.1	0/6		7.5	8.1	0/6
	D O (mg/l)	9.5	8.4	12	0/6	5.2	3.6	9.4	4/6
		(2.4)				(1.2)			
	B O D (mg/l)	2.2	0.9	5.6	1/6	1.0	0.6	1.4	0/6
生	C O D (mg/l)	4.4	3.1	7.4	-/6	3.1	2.0	4.7	-/6
活	S S (mg/l)	3	<1	5	0/6	13	2	43	0/6
環 境	大 腸 菌 数 (CFU/100ml)	1400	340	2700	6/6	680	70	1400	6/6
項目	N - へ キ サ ン 抽 出 物 質 (mg/l)							<0.5	-/6
	全 窒 素 (mg/l)	3.4	1.6	8.1	-/6	1.2	0.48	1.7	-/6
	全 燐 (mg/l)	0.32	0.1	0.71	-/6	0.15	0.094	0.18	-/6
	全 亜 鉛 (mg/l)	0.007	0.002	0.015	-/6	0.008	0.004	0.011	-/6
	ノニルフェノール (mg/l)								
$\vdash \vdash$	L A S (mg/l)						8		
	カト゛ミウム (mg/l)							<0.0003	0/4
	全 シ ァ ン (mg/l)							<0.1	0/4
	鉛 (mg/l)							<0.005	0/4
	六 価 ク ロ ム (mg/l)					0.004	0.004	<0.01	0/4
	砒 素 (mg/l)					0.001	0.001	0.001	0/4
	総 水 銀 (mg/l)							<0.0005	0/4
	アルキル水 銀 (mg/l)							40.000 F	0/4
健	P C B (mg/l)							<0.0005	0/4
	, , , , , , (ilig/l/							<0.002	0/4
	四 塩 化 炭 素 (mg/l) 1,2- シ クロロエタン (mg/l)							<0.0002 <0.0004	0/4
_	1,1- シ								0/4
康	シス -1,2- シ							<0.002 <0.004	0/4
	1,1,1- トリクロロエタン (mg/l)							<0.01	0/4
	1,1,2- トリクロロエタン (mg/l)							<0.0006	0/4
項	トリクロロエチレン (mg/l)							<0.001	0/4
	〒トラクロロエチレン (mg/l)							<0.001	0/4
	1,3- シ゛クロロフ゜ロヘ゜ン (mg/l)							<0.0002	0/4
	チ ウ ラ ム (mg/l)							<0.0006	0/4
目	シマシ * ン (mg/l)							<0.0003	0/4
	チ オ へ ゜ン カ ル フ ゜ (mg/l)							<0.002	0/4
	へ ・ ン セ ・ ン (mg/l)							<0.001	0/4
	セ レ ソ (mg/l)							<0.001	0/4
	硝酸性窒素及び亜硝酸性窒素(mg/l)					0.68	0.39	1.00	0/4
	ふ っ 素 (mg/l)					0.35	0.3	0.5	0/4
	ほ う 素 (mg/l)					2.7	1.6	3.7	4/4
	1,4- シ * オ キ サ ン (mg/l)							<0.005	0/4
	銅 (mg/l)								
特	鉄 (溶 解 性) (mg/l)								
殊項	マンカ゛ン(溶 解 性) (mg/l)								
目	7 П Д (mg/l)								
	フ ェ ノ ー ル 類 (mg/l)								

水 域 名				日 7	5 川			
地 点 名			(補], 一)			新湊橋(0	(基], 一)	
測定值	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
E P N (mg/l)								
フェノール (mg/l)								
クロロホルム (mg/l)								
ホルムアルデヒド (mg/l)								
4-t- オクチルフェノール (mg/l)								
ア ニ リ ン (mg/l)								
2,4- ジクロロフェノー ル (mg/l)								
トランス-1,2-ジクロロエチレン(mg/l)								
1,2 ー ジ ク ロ ロ プ ロ パ ン (mg/l)								
p ー ジ ク ロ ロ ベ ン ゼ ン (mg/l)								
イ ソ キ サ チ オ ン (mg/l)								
ダ イ ア ジ ノ ン (mg/l)								
フェニトロチオン(MEP)(mg/l)								
イソプロチオラン (mg/l)								
オ キ シ ン 銅 (有 機 銅) (mg/l)								
要 クロロタロニル(TPN)(mg/l)								
監プロピザミド (mg/l)								
視								
目 フェノブカルブ (BPMC)(mg/l)								
イプロベンホス (IBP)(mg/l)								
クロルニトロフェン (CNP)(mg/l)								
ト ル エ ン (mg/l)								
キ シ レ ン (mg/l)								
フタル 酸ジェチルヘキシル(mg/l)							<0.006	-/1
ニ ッ ケ ル (mg/l)								
モ リ ブ デ ン (mg/l)								
ア ン チ モ ン (mg/l)								
塩 化 ビ ニ ル モ ノ マ ー (mg/l)							<0.0002	-/1
エピクロロヒドリン (mg/l)							<0.00003	-/1
全 マ ン ガ ン (mg/l)								
ウ ラ ン (mg/l)								
P F O S ※ 2(ng/l)					2.6		2.6	-/1
P F O A ※ 3(ng/l)					1.2		1.2	-/1
PFOS及びPFOA (ng/l)					3.8		3.8	-/1
ア ン モ ニ ア 性 窒 素 (mg/l)								
硝 酸 性 窒 素 (mg/l)					0.66	0.37	0.99	-/4
亜 硝 酸 性 窒 素 (mg/l)					0.03	0.02	0.05	-/4
」 ン 酸 性 リ ン (mg/l)					0.13	0.07	0.17	-/6
そ								
他 トリハロメタン生成能 (mg/l)								
項 2 — M I B (μ g/l)								
目 ジ オ ス ミ ン (μ mg/l)								
塩 化 物 イ オ ン (mg/l)					10000	6400	14000	-/4
塩 分 濃 度 (‰)								
電 気 伝 導 率 (μ S/cm)	250	190	320	-/6	30000	16000	42000	-/6

(備考) ※1 x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 ※2 ペルフルオロオクタンスルホン酸(PFOS) ※3 ペルフルオロオクタン酸(PFOA)

	水 域 名				山田川	(海 南)			
	地 点 名		三中前(D	【補】, 一)			海南大橋(D【基】, 一)	
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		7.4	7.8	0/6		7.4	8.1	0/6
	D O (mg/l)	8.9	8.2	11	0/6	5.0	3.4	9.2	0/6
		(6.3)				(1.9)			
	B O D (mg/l)	4.6	1.6	9	1/6	1.6	0.9	3.1	0/6
生	C O D (mg/l)	6.9	3.6	9.5	-/6	3.2	1.8	4.9	-/6
活環	S S (mg/l)	1	<1	2	0/6	3	1	7	0/6
境	大 腸 菌 数 (CFU/100ml)	4800	620	15000	6/6	870	55	3700	6/6
項目	N - へ キ サ ン 抽 出 物 質 (mg/l)							<0.5	-/6
	全 窒 素 (mg/l)	4.4	1.3	7.7	-/6	1.2	0.48	2	-/6
	全 燐 (mg/l)	0.43	0.092	0.82	-/6	0.16	0.062	0.31	-/6
	全 亜 鉛 (mg/l)	0.007	0.001	0.014	-/6	0.006	0.004	0.011	-/6
	ノニルフェノール (mg/l)								
\vdash	L A S (mg/l)							/0.0000	0 /4
	カト * ミウム (mg/l) 全 シ ア ン (mg/l)							<0.0003 <0.1	0/4
	至 タ							<0.005	0/4
	新 (mg/l) 六 価 ク ロ ム (mg/l)							<0.003	0/4
	<u>ス 温 / 日 ス (mg/l)</u> 砒 素 (mg/l)					0.001	0.001	0.001	0/4
	総 水 銀 (mg/l)					0.001	0.001	<0.0005	0/4
	ア ル キ ル 水 銀 (mg/l)							(0.0000	•/ .
	P C B (mg/l)							<0.0005	0/4
健	シ * ク ロ ロ メ タ ン (mg/l)							<0.002	0/4
	四塩化炭素(mg/l)							<0.0002	0/4
	1,2- シ [*] クロロエタン (mg/l)							<0.0004	0/4
康	1,1- シ [*] クロロエチレン (mg/l)							<0.002	0/4
	シス -1,2- シ゛クロロエチレン (mg/l)							<0.004	0/4
	1,1,1- トリクロロエタン (mg/l)							<0.01	0/4
	1,1,2- トリクロロエタン (mg/l)							<0.0006	0/4
項	ト リ ク ロ ロ エ チ レ ン (mg/l)							<0.001	0/4
	テトラクロロエチレン (mg/l)							<0.001	0/4
	1,3- シ							<0.0002	0/4
目	チ ウ ラ ム (mg/l)							<0.0006	0/4
	シ マ シ ゛ ン (mg/l)							<0.0003	0/4
	チ オ へ ゛ ン カ ル フ ゛ (mg/l)							<0.002	0/4
	へ ・ ン セ ・ ン (mg/l)							<0.001	0/4
	セ レ ソ (mg/l)							<0.001	0/4
	硝酸性窒素及び亜硝酸性窒素(mg/l)					0.61	0.15	0.96	0/4
	ふっ素 (mg/l)					0.35	0.3	0.5	0/4
	ほ う 素 (mg/l)					2.9	1.6	4.3	4/4
\vdash	1,4- シ * オ キ サ ン (mg/l)							<0.005	0/4
μ ₊ +	銅 (mg/l) 鉄 (
特殊	鉄 (溶 解 性) (mg/l)								
項目									
	クロム (mg/l) フェノール 類 (mg/l)								
	ノ エ ノ ― ル 類 (mg/l)								

	水 域 名				山田川	(海 南)			
	地 点 名		三中前(D	【補】, 一)			海南大橋	D[基], 一)	
381 -	測定値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
測定	E P N (mg/l)				-				
-									
-									
-	クロロホルム (mg/l)								
<u> </u>	ホ ル ム ア ル デ ヒド (mg/l)								
 	-t- オクチルフェノール (mg/l)								
7									
 	4- ジ ク ロ ロ フ ェ ノ ー ル (mg/l)								
	ランス-1,2-ジクロロエチレン(mg/l)								
1,	2 — ジ ク ロ ロ プ ロ パ ン (mg/l)								
р	ー ジ ク ロ ロ ベ ン ゼ ン (mg/l)								
1	′ ソ キ サ チ オ ン (mg/l)								
ダ	「 イ ア ジ ノ ン (mg/l)								
	'ェニトロチオン(MEP)(mg/l)								
1	′ソプロチオラン (mg/l)								
オ	- キ シ ン 銅 (有 機 銅) (mg/l)								
要り	' ロロタロニル (TPN) (mg/l)								
監視	゜ロ ピ ザ ミ ド (mg/l)								
項ジ	・ク ロ ル ボ ス (DDVP)(mg/l)								
	' ェ ノ ブ カ ル ブ (BPMC)(mg/l)								
1	' プ ロ ベ ン ホ ス (IBP)(mg/l)								
2	' ロ ル ニトロフェン (CNP)(mg/l)								
1	ル エ ン (mg/l)								
+	- シ レ ン (mg/l)								
7	タル 酸 ジェチ ルヘキシ ル (mg/l)							<0.006	-/1
	- ッ ケ ル (mg/l)								
I T	: リ ブ デ ン (mg/l)								
7	プ ン チ モ ン (mg/l)								
塩	〗化 ビニ ル モ ノ マ ー (mg/l)							<0.0002	-/1
I ⊨	: ピクロロヒドリン (mg/l)							<0.00003	-/1
	-								· ·
<u> -</u>									
P						1.2		1.2	-/1
P						1.6		1.6	-/1
 	FOS及びPFOA (ng/l)					2.8		2.8	-/1
┝	r 0 3 及 0 F F 0 A (ng/l) ' ン モ ニ ア 性 窒 素 (mg/l)					2.0		2.0	/ 1
H						0.50	0.12	0.0	-/A
確						0.58	0.13	0.9	-/4
						0.03	0.01	0.04	-/4
そり						0.13	0.05	0.28	-/6
の温									
0	リハロメタン 生成 能 (mg/l)								
項 2									
	・オスミン (μ mg/l)								
	塩 化 物 イ オ ン (mg/l)					11000	6600	17000	-/4
塩									
	電 気 伝 導 率 (μ S/cm)	210	140	270	-/6	32000	18000	46000	-/6

(備考) ※1 x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 ※2ペルフルオロオクタンスルホン酸(PFOS) ※3ペルフルオロオクタン酸(PFOA)

2-13 有田川・山田川 (湯浅)・広川水域水質測定結果

<有田川>

①のとおり小峠橋で年4回、その他3測定点でそれぞれ年6回の測定を実施した。その結果は、 ③のとおりである。

この河川は、環境基準類型(河川の部)Aをあてはめている。

BOD75%値でみると、環境基準点である保田井堰では、1.1 mg/1 で、環境基準値(A:2 mg/1)に適合している。


また、平成 26 年 10 月 10 日付け和歌山県告示第 2598 号で、水生生物保全に係る類型として、 有田川 (二川ダムから上流の水域) を生物 A 類型に、有田川 (安諦橋から二川ダムまでの水域) を 生物 B 類型に指定した。

水生生物保全に係る環境基準項目である全亜鉛【基準値(生物 A, B: 0.03 mg/L)】、ノニルフェノール【基準値(生物 A: 0.001 mg/L、生物 B: 0.002 mg/L)】、LAS【基準値(生物 A: 0.03 mg/L、生物 B: 0.05 mg/L)】の平均値でみると、全ての環境基準点で環境基準値に適合している。

<山田川(湯浅)・広川>

①のとおり、1 測定点でそれぞれ年6回の測定を実施した。その結果は、③のとおりである。

① 有田川・山田川 (湯浅)・広川水域測定点図

② 有田川のBOD75%値の推移

③ 有田川・山田川 (湯浅)・広川水域水質測定結果一覧

	水 域 名						有日	田川田					
	地 点 名	\J\	峠橋(A【補	】,生物A【基	[])	東	[川橋(A【補]	】,生物B【補	i])	金	:屋橋(A【補)	】,生物B【補	j])
;Bil	測定値 定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
炽	<u></u> p H		7.5	8.8	1/4		7.6	8.1	0/6		7.6	8.0	0/6
	D O (mg/l)	11	9.2	13	0/4	10	9.1	13	0/6	10	9.4	12	6/6
		(<0.5)				(0.9)				(0.6)			
	B O D (mg/l)	0.6	<0.5	0.7	0/4	0.7	<0.5	1.0	0/6	0.6	<0.5	0.8	0/6
_	C O D (mg/l)	1.0	0.6	1.2	-/4	1.4	0.8	2.1	-/6	1.3	0.9	2.3	-/6
生活	S S (mg/l)			<1	0/4	2	<1	4	0/6	1	<1	2	0/6
環境	大 腸 菌 数 (CFU/100ml)	18	4	30	0/4	25	5	88	0/6	37	10	130	0/6
項目	N - へ キ サ ン 抽 出 物 質 (mg/l)												
	全 窒 素 (mg/l)	0.26	0.1	0.44	-/4	0.35	0.26	0.45	-/6	0.36	0.27	0.48	-/6
	全 燐 (mg/l)	0.0065	0.004	0.011	-/4	0.009	0.004	0.018	-/6	0.0085	0.003	0.014	-/6
	全 亜 鉛 (mg/l)			<0.001	0/4	0.001	<0.001	0.001	0/6	0.001	<0.001	0.001	0/6
	ノニ ル フェ ノー ル (mg/l)			<0.00006	0/1								
	L A S (mg/l)			<0.0006	0/1								
	カ ト ゜ ミ ウ ム (mg/l)												
	全 シ ア ン (mg/l)												
	鉛 (mg/l)												
	六価りロム (mg/l)												
	砒 素 (mg/l)												
	総 水 銀 (mg/l)												
	アルキル水 銀 (mg/l)												
健	P C B (mg/l) シ ^ ク ロ ロ メ タ ン (mg/l)												
	<u> </u>												
	四 塩 1C 灰 来 (mg/l) 1,2- シ カ ロ ロ エ タ ン (mg/l)												
康	1,1- シ クロロエチレン (mg/l)												
康	シス -1,2- シ												
	1,1,1-トリクロロエタン (mg/l)												
	1,1,2- トリクロロエタン (mg/l)												
項	トリクロロエチレン (mg/l)												
	テトラクロロエチレン (mg/l)												
	1,3- シ												
	チ ウ ラ ム (mg/l)												
目	シ マ シ ゜ ン (mg/l)												
	チオへ゛ンカルフ゛(mg/l)												
	へ * ン セ * ン (mg/l)												
	セ レ ン (mg/l)												
	硝酸性窒素及び亜硝酸性窒素(mg/l)												
	ふ っ 素 (mg/l)												
	ほ う 素 (mg/l)												
	1,4- シ * オ キ サ ン (mg/l)												
	銅 (mg/l)					-							
特	鉄 (溶 解 性) (mg/l)												
殊項	マンカ゛ン(溶 解 性) (mg/l)												
目	ク ロ ム (mg/l)												
	フ ェ ノ ー ル 類 (mg/l)												

	水 域 名						有日	田川田					
	地 点 名	小	峠橋(A【補	】,生物A【基	[])	東	川橋(A【補	】,生物B【補	1)	金	:屋橋(A【補)], 生物B【補	j])
:81	測定値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
790	E P N (mg/l)												
	フ ェ ノ ー ル (mg/l)			<0.001	-/1								
	クロロホルム (mg/l)			<0.001	-/1								
	ホルムアルデヒド (mg/l)			<0.008	-/1								
	4-t- オクチルフェノール (mg/l)												
	ア ニ リ ン (mg/l)							9					
	2,4- ジクロロフェノー ル (mg/l)												
	トランス-1,2-ジクロロエチレン(mg/l)												
	1,2 — ジ クロロプロパン(mg/l)												
	p — ジ ク ロ ロ ベ ン ゼ ン (mg/l)												
	イ ソ キ サ チ オ ン (mg/l)												
	ダ イ ア ジ ノ ン (mg/l)												
	フェニトロチオン(MEP)(mg/l)												
	イソプロチオラン (mg/l)							9					
	オキシン銅(有機銅)(mg/l)												
要監													
視													
項目													
	フェフフカルフ (BPMC)(mg/l) イプロベンホス (IBP)(mg/l)												
	クロルニトロフェン (CNP)(mg/l)												
	トル エン (mg/l)												
	キ シ レ ン (mg/l)												
	フタル 酸ジェチルヘキシル (mg/l)												
	ニ ッ ケ ル (mg/l)												
	モ リ ブ デ ン (mg/l)												
	ア ン チ モ ン (mg/l)												
	塩 化 ビ ニ ル モ ノ マ ー (mg/l)												
	エピクロロヒドリン (mg/l)												
	全 マ ン ガ ン (mg/l)												
	ウ ラ ン (mg/l)												
	P F O S ※ 2(ng/l)												
	P F O A 💥 3(ng/l)												
	PFOS及びPFOA (ng/l)												
	ア ン モ ニ ア 性 窒 素 (mg/l)												
	硝 酸 性 窒 素 (mg/l)												
	亜 硝 酸 性 窒 素 (mg/l)												
7	リン酸性リン (mg/l)												
の他													
の	トリハロメダン 生 成 能 (mg/l)												
項目													
	ジ オ ス ミ ン (μ mg/l)												
	塩 化 物 イ オ ン (mg/l)												
	塩分濃度(‰)					00	70	110	/0	00	70	110	/0
	電 気 伝 導 率 (μ S/cm)					92	73	110	-/6	93	76	110	-/6

(備考) ※1 x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 ※2 ペルフルオロオクタンスルホン酸(PFOS) ※3 ペルフルオロオクタン酸(PFOA)

			有 E	田 川			山田川	(湯 浅)					
	地 点 名	保E	田井堰(A【基		基】)			(-, -)				(-, -)	
		平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
測	定 項 目		7.5	7.9	0/6		7.6	8.7	-/6		7.7	7.9	-/6
	D O (mg/l)	10	7.9	12	6/6	10	8.3	13	-/6	10	9.2	13	-/6
		(1.1)				(2.3)		1	, -	(1)			, -
	B O D (mg/l)		<0.5	1.5	0/6	1.4	<0.5	2.5	-/6	0.8	0.5	1.1	-/6
١	C O D (mg/l)	1.6	0.6	2.4	-/6	4.4	3.3	6.6	-/6	2.3	1.4	3.6	-/6
生活	S S (mg/l)	2	<1	3	0/6	4	1	6	-/6	4	<1	13	-/6
環境	大 腸 菌 数 (CFU/100ml)	37	11	96	0/6	1300	120	4000	-/6	100	3	320	-/6
項	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	-/6								
目	全 窒 素 (mg/l)	0.8	0.48	1.4	-/6	2.2	1.4	3.1	-/6	0.59	0.46	0.78	-/6
	全 燐 (mg/l)	0.034	0.01	0.073	-/6	0.15	0.11	0.23	-/6	0.026	0.009	0.049	-/6
	全 亜 鉛 (mg/l)	0.001	<0.001	0.002	0/6	0.009	0.007	0.011	-/6	0.002	<0.001	0.003	-/6
	ノニ ル フェ ノー ル (mg/l)			<0.00006	0/1								
	L A S (mg/l)			<0.0006	0/1								
	カ ト ゜ ミ ウ ム (mg/l)			<0.0003	0/4			<0.0003	0/4			<0.0003	0/4
	全 シ ア ン (mg/l)			<0.1	4/4			<0.1	0/4			<0.1	0/4
	鉛 (mg/l)			<0.005	0/4			<0.005	0/4			<0.005	0/4
	六 価 ク ロ ム (mg/l)			<0.01	0/4			<0.01	0/4			<0.01	0/4
	砒 素 (mg/l)			<0.001	4/4			<0.001	0/4			<0.001	0/4
	総 水 銀 (mg/l)			<0.0005	0/4			<0.0005	0/4			<0.0005	0/4
	アルキル水 銀 (mg/l)												
健	P C B (mg/l)			<0.0005	0/4			<0.0005	0/4			<0.0005	0/4
	シ * ク ロ ロ メ タ ン (mg/l)			<0.002	0/4			<0.002	0/4			<0.002	0/4
	四塩化炭素(mg/l)			<0.0002	0/4			<0.0002	0/4			<0.0002	0/4
	1,2- シ ゙ ク ロ ロ エ タ ン (mg/l)			<0.0004	0/4			<0.0004	0/4			<0.0004	0/4
康	1,1- シ * クロロエチレン (mg/l)			<0.002	0/4			<0.002	0/4			<0.002	0/4
	シス -1,2- シ゛クロロエチレン (mg/l)			<0.004	0/4			<0.004	0/4			<0.004	0/4
	1,1,1- ト リ ク ロ ロ エ タ ン (mg/l)			<0.001	4/4 0/4			<0.001	0/4			<0.01 <0.0006	0/4
項	1,1,2- トリクロロエタン (mg/l) トリクロロエチレン (mg/l)			<0.000	0/4			<0.001	0/4			<0.000	0/4
	テトラクロロエチレン (mg/l)			<0.001	0/4			<0.001	0/4			<0.001	0/4
	1,3- シ * クロロフ ° ロヘ ° ン (mg/l)			<0.0002	0/4			<0.0002	0/4			<0.0002	0/4
				<0.0002	0/4			<0.0002	0/4			<0.0002	0/4
目	シマシ ・ン (mg/l)			<0.0003	0/4			<0.0003	0/4			<0.0003	0/4
	チオヘ゛ンカルフ゛(mg/l)			<0.002	0/4			<0.002	0/4			<0.002	0/4
	へ * ン セ * ン (mg/l)			<0.001	0/4			<0.001	0/4			<0.001	0/4
	セ レ ン (mg/l)			<0.001	0/4			<0.001	0/4			<0.001	0/4
			0.42	1	1/4	1.4	1.1	1.9	0/4	0.43	0.30	0.73	0/4
	ふ っ 素 (mg/l)			<0.1	0/4			<0.1	0/4	0.1	<0.1	0.1	0/4
	ほ う 素 (mg/l)			<0.1	4/4			<0.1	0/4			<0.1	0/4
	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/4			<0.005	0/4			<0.005	0/4
	銅 (mg/l)												
特	鉄 (溶 解 性) (mg/l)												
殊項	マンカ゛ン(溶 解 性) (mg/l)												
Ê	7 П Д (mg/l)												
	フェノール類 (mg/l)												

水 域 名		———— 有 E	 B JII			山田川	(湯 浅)			·	<u></u> ЛІ	
地 点 名	保田	日井堰(A【基	】, 生物B【	基】)		希望橋	(-, -)			新広橋	(-, -)	
測定值	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
測 定 項 目												
フェノール (mg/l)			0.001	-/1								
クロロホルム (mg/l)			<0.001	-/1								
ホルムアルデヒド (mg/l)			<0.008	-/1								
4-t- オクチルフェノール (mg/l)												
ア ニ リ ン (mg/l)												
2,4- ジクロロフェノー ル (mg/l)												
トランス-1,2-ジクロロエチレン(mg/l)												
1,2 — ジ ク ロ ロ プ ロ パ ン (mg/l)												
p — ジクロロベンゼン(mg/l)												
イ ソ キ サ チ オ ン (mg/l)												
ダ イ ア ジ ノ ン (mg/l)												
フェニトロチ オン(MEP)(mg/l)												
イソプロチオラン (mg/l)												
オ キ シ ン 銅 (有 機 銅)(mg/l)												
要 クロロタロニル(TPN)(mg/l)												
監 プロピザミド (mg/l)												
項 ジ ク ロ ル ボ ス (DDVP)(mg/l)												
目 フェノブカルブ (BPMC)(mg/l)						-						
イ プ ロ ベ ン ホ ス (IBP)(mg/l)												
クロルニトロフェン (CNP)(mg/l)												
ト ル エ ン (mg/l)												
キ シ レ ン (mg/l)												
フタル 酸ジェチルヘキシル(mg/l)												
ニ ッ ケ ル (mg/l)												
モ リ ブ デ ン (mg/l)												
ア ン チ モ ン (mg/l)												
塩 化 ビ ニ ル モ ノ マ ー (mg/l)												
エピクロロヒドリン (mg/l)												
全 マ ン ガ ン (mg/l)												
ウ ラ ン (mg/l)												
P F O S ※ 2(ng/l)	0.6		0.6	-/1								
P F O A ※ 3(ng/l)			1.0	-/1								
PFOS及びPFOA (ng/l)	1.7		1.7	-/1								
ア ン モ ニ ア 性 窒 素 (mg/l)												
硝 酸 性 窒 素 (mg/l)	0.59	0.41	1	-/4	1.4	1.1	1.9	-/4	0.43	0.30	0.72	-/4
亜 硝 酸 性 窒 素 (mg/l)	_	-	<0.01	-/4	0.02	0.01	0.04	-/4			<0.01	-/4
リン酸性リン (mg/l)	0.03	0.01	0.07	-/6								
の												
の F リハロメダフ 生 成 能 (mg/l)												
項 2 - M I B (μ g/l)												
ジ オ ス ミ ン (μ mg/l)	•		_	/4	10		10	/4		-		/4
塩化物イオン(mg/l)	3	3	3	-/4	12	9	16	-/4	5	5	6	-/4
塩 分 濃 度 (%) 雪 気 伝 道 率 (# \$/om)	100	88	100	_ /0	220	100	200	_/0	100	96	150	_/e
電気伝導率(μS/cm)	100		120	-/6	230	180	280	-/6	120	90	150	-/6

(備考) ※1 x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 ※2 ペルフルオロオクタンスルホン酸(PFOS) ※3 ペルフルオロオクタン酸(PFOA)

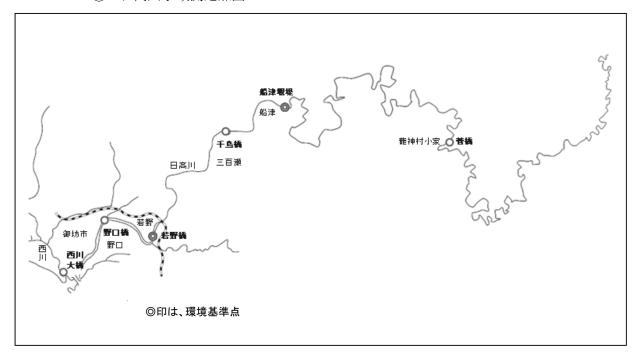
2-14 日高川・切目川水域水質測定結果

<日高川>

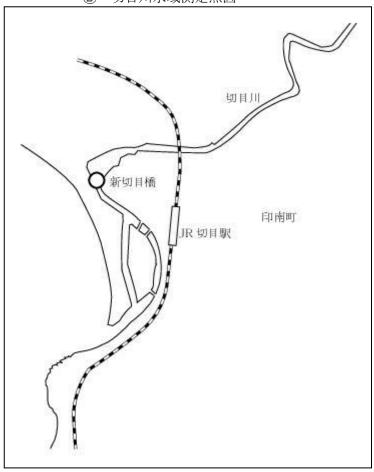
①のとおり本川 5 測定点、西川 1 測定点の計 6 測定点で、菅橋で年 4 回、その他 5 測定点でそれぞれ年 6 回の測定を実施した。その結果は、4 のとおりである。

この河川(西川を除く)は、環境基準類型(河川の部)Aをあてはめている。

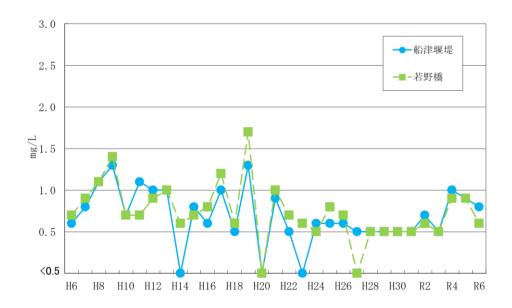
BODの75%値でみると、環境基準点である船津堰堤では、0.8~mg/1、若野橋では、0.6~mg/1で、ともに環境基準値 (A:2~mg/1) に適合している。


また、平成 26 年 10 月 10 日付け和歌山県告示第 2598 号で、水生生物保全に係る類型として、 日高川 (椿山ダムから上流の水域) を生物 A 類型に、日高川 (天田橋から椿山ダムまでの水域) を 生物 B 類型に指定した。

水生生物保全に係る環境基準項目である全亜鉛【基準値(生物 A, B: 0.03 mg/L)】、ノニルフェノール【基準値(生物 A: 0.001 mg/L、生物 B: 0.002 mg/L)】、LAS【基準値(生物 A: 0.03 mg/L、生物 B: 0.05 mg/L)】の平均値でみると、全ての環境基準点で環境基準値に適合している。


<切目川>

②のとおり、1 測定地点で年6回の測定を実施した。その結果は、④のとおりである。


① 日高川水域測定点図

② 切目川水域測定点図

③ 日高川のBOD75%値の推移

④ 日高川·切目川水域水質測定結果一覧

	水 域 名						日福	高 川					
	地 点 名	,	菅橋(A【補】	生物A【基】)	船	聿堰堤(A【基	基】, 生物B【礼	哺】)	Ŧ	島橋(A【補	】,生物B【補	j])
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		6.8	7.9	0/4		7.0	7.7	0/6		7.1	7.6	0/6
	D O (mg/l)	10	9.2	11	0/4	10	8.7	11	0/6	10	9.0	11	0/6
		(<0.5)				(0.8)				(0.7)			
	B O D (mg/l)	0.5	<0.5	0.5	0/4	0.7	<0.5	1.2	0/6	0.6	<0.5	1.1	0/6
生	C O D (mg/l)	0.7	0.5	0.8	-/4	1.0	0.5	1.4	-/6	0.9	0.6	1.1	-/6
活	S S (mg/l)			<1	0/4	1	<1	1	0/6	1	<1	1	0/6
環境	大 腸 菌 数 (CFU/100ml)	25	14	39	0/4	31	10	98	0/6	39	15	92	0/6
項目	N - へ キ サ ン 抽 出 物 質 (mg/l)												
	全 窒 素 (mg/l)	0.11	<0.05	0.17	-/4	0.15	0.10	0.23	-/6	0.15	0.10	0.22	-/6
	全 燐 (mg/l)	0.005	0.003	0.006	-/4	0.005	0.004	0.007	-/6	0.005	0.003	0.007	-/6
	全 亜 鉛 (mg/l)			<0.001	0/4	0.001	<0.001	0.002	0/6	0.001	<0.001	0.002	0/6
	ノニ ル フェ ノー ル (mg/l)			<0.00006	0/1								
	L A S (mg/l)			<0.0006	0/1								
	カ ト ゜ ミ ウ ム (mg/l)							<0.0003	0/4				
	全 シ ア ン (mg/l)							<0.1	0/4				
	鉛 (mg/l)							<0.005	0/4				
	六 価 ク ロ ム (mg/l)							<0.02	0/4				
	础 素 (mg/l)							<0.001	0/4				
	総 水 銀 (mg/l)							<0.0005	0/4				
	アルキル水 銀 (mg/l)								- / -		-		
健	P C B (mg/l)							<0.0005	0/4				
	シ * ク ロ ロ メ タ ン (mg/l)							<0.002	0/4				
	四塩化炭素(mg/l)							<0.0002	0/4		-		
_	1,2- シ							<0.0004 <0.002	0/4				
康	シス -1,2- シ クロロエチレン (mg/l)							<0.002	0/4				
	1,1,1-トリクロロエタン (mg/l)							<0.01	0/4				
	1,1,2-トリクロロエタン (mg/l)							<0.0006	0/4				
項	トリクロロエチレン (mg/l)							<0.001	0/4				
	テトラクロロエチレン (mg/l)							<0.001	0/4				
	1,3- シ							<0.0002	0/4				
	チ ウ ラ ム (mg/l)							<0.0006	0/4				
目	シマシ * ン (mg/l)							<0.0003	0/4				
	チ オ へ ゜ン カ ル フ ゜ (mg/l)							<0.002	0/4				
	へ ゜ ン セ ゜ ン (mg/l)							<0.001	0/4				
	セ レ ン (mg/l)							<0.001	0/4				
	硝酸性窒素及び亜硝酸性窒素 (mg/l)					0.09	0.05	0.17	0/4				
	ふ っ 素 (mg/l)							<0.1	0/4				
	ほ う 素 (mg/l)							<0.1	0/4				
	1,4- シ * オ キ サ ン (mg/l)							<0.005	0/4				
	銅 (mg/l)												
特	鉄 (溶 解 性) (mg/l)												
殊項	マンカ゛ン(溶 解 性) (mg/l)												
目	7 П Д (mg/l)												
	フ ェ ノ ー ル 類 (mg/l)												
	7. At (118/1/		i			I	1			I	1	L	

	水 域 名						日 7	高 川					
	地 点 名	Ī	营橋(A【補】,	生物A【基】)	船	聿堰堤(A【剨	隻】, 生物B【ネ	補】)	Ŧ	島橋(A【補	】,生物B【補])
測	測 定 値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	E P N (mg/l)												
	フ ェ ノ ー ル (mg/l)			<0.001	-/1								
	クロロホルム (mg/l)			<0.001	-/1								
	ホルムアルデヒド (mg/l)			<0.008	-/1								
	4-t- オクチルフェノール (mg/l)												
	ア ニ リ ン (mg/l)												
	2,4- ジクロロフェノー ル (mg/l)												
	トランス-1,2-ジクロロエチレン(mg/l)												
	1,2 — ジクロロプロパン(mg/l)												
	p — ジ ク ロ ロ ベ ン ゼ ン (mg/l)												
	イ ソ キ サ チ オ ン (mg/l)												
	ダ イ ア ジ ノ ン (mg/l)												
	フェニトロチオン(MEP)(mg/l)												
	イソプロチオラン (mg/l)												
	オキシン銅(有機銅)(mg/l)												
要	クロロタロニル (TPN) (mg/l)												
監視	プ ロ ピ ザ ミ ド (mg/l)												
項目	ジ ク ロ ル ボ ス (DDVP)(mg/l)												
п	フェノブ カル ブ (BPMC)(mg/l)												
	イプロベンホス(IBP)(mg/l)												
	クロルニトロフェン(CNP)(mg/l)												
	ト ル エ ン (mg/l)												
	キ シ レ ン (mg/l)												
	フタル酸ジエチルヘキシル(mg/l)							<0.006	-/1				
	ニ ッ ケ ル (mg/l)												
	モ リ ブ デ ン (mg/l)												
	ア ン チ モ ン (mg/l)							(0.0000					
	塩 化 ビニ ル モ ノ マ ー (mg/l)							<0.0002	-/1				
	エピクロロヒドリン (mg/l) 全 マ ン ガ ン (mg/l)							<0.00003	-/1				
	ウ ラ ン (mg/l) P F O S ※ 2(ng/l)							<0.1	-/1				
	P F O A ※ 3(ng/l) P F O S 及 び P F O A (ng/l)							<0.2 <0.3	-/1 -/1				
	アンモニア性窒素 (mg/l)							\0.0	/1				
	が					0.085	0.05	0.16	-/4				
	亜 硝 酸 性 窒 素 (mg/l)					5.500	5.00	<0.01	-/4				
	リン酸性リン (mg/l)							<0.01	-/6				
その									, •				
他	トリハロメタン 牛 成 能 (mg/l)												
の項	2 — M Ι B (μ g/l)												
目	ジ オ ス ミ ン (μ mg/l)												
	塩 化 物 イ オ ン (mg/l)					2	2	2	-/4				
	塩 分 濃 度 (‰)												
	電 気 伝 導 率 (μ S/cm)					72	64	88	-/6	71	63	87	-/6
	備考)※1 x:環境基準に適合し	3-11 m = 1	46/_	6ACSBIL 근	口 米仁		1		3				

(備考) ※1 x: 環境基準に適合しない日数 y: 総測定日数 () 内は75%値 ※2 ペルフルオロオクタンスルホン酸(PFOS) ※3 ペルフルオロオクタン酸(PFOA)

	水 域 名				日高	高川						Ш	
	地 点 名	若	野橋(A【基)	l, 生物B【基			口橋(A【補	】,生物B【補	i])			≸ (−, −)	
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	х/у
	рН		7.2	7.7	0/6		7.3	8.0	0/6		7.0	8.3	-/6
	D O (mg/l)	10	8.7	11	0/6	10	9.0	11	0/6	8.1	7.1	9.0	-/6
		(0.6)				(0.6)				(1.1)			
	B O D (mg/l)	0.6	<0.5	1.1	0/6	0.6	<0.5	1.1	0/6	0.9	<0.5	1.3	-/6
	C O D (mg/l)	0.9	0.5	1.2	-/6	0.9	0.6	1.1	-/6	2.9	1.6	5.6	-/6
生活	S S (mg/l)	1	<1	1	0/6	1	<1	1	0/6	4	2	10	-/6
環境	大 腸 菌 数 (CFU/100ml)	31	9	120	0/6	29	5	78	0/6	420	160	780	-/6
項	N - へ キ サ ン 抽 出 物 質 (mg/l)							<0.5	-/6				
目	全 窒 素 (mg/l)	0.19	0.13	0.29	-/6	0.18	0.11	0.26	-/6	0.68	0.35	1.6	-/6
	全 燐 (mg/l)	800.0	0.004	0.011	-/6	0.009	0.004	0.012	-/6	0.091	0.048	0.12	-/6
	全 亜 鉛 (mg/l)	0.001	<0.001	0.002	0/6			<0.001	0/6	0.004	0.001	0.006	-/6
	ノニ ル フェ ノー ル (mg/l)			<0.00006	0/1								
	L A S (mg/l)			<0.0006	0/1								
	カ ト ゜ ミ ウ ム (mg/l)			<0.0003	0/4					0.00043	<0.0003	0.0008	0/4
	全 シ ア ン (mg/l)			<0.1	0/4							<0.1	0/4
	鉛 (mg/l)			<0.005	0/4							<0.005	0/4
	六 価 ク ロ ム (mg/l)			<0.02	0/4							<0.02	0/4
	砒 素 (mg/l)			<0.001	0/4					0.001	<0.001	0.001	0/4
	総 水 銀 (mg/l)			<0.0005	0/4							<0.0005	0/4
	アルキル水 銀 (mg/l)												
健	P C B (mg/l)			<0.0005	0/4							<0.0005	0/4
	シ * ク ロ ロ メ タ ン (mg/l)			<0.002	0/4							<0.002	0/4
	四塩化炭素(mg/l)			<0.0002	0/4							<0.0002	0/4
	1,2- シ			<0.0004	0/4							<0.0004	0/4
康	1,1- シ クロロエチレン (mg/l)			<0.002	0/4							<0.002	0/4
	シス -1,2- シ゛クロロエチレン (mg/l)			<0.004	0/4							<0.004	0/4
	1,1,1-			<0.01	0/4							<0.01	0/4
項	1,1,2-			<0.0006	0/4							<0.0006	0/4
^	トリクロロエチレン (mg/l) テトラクロロエチレン (mg/l)			<0.001	0/4							<0.001	0/4
	1,3- シ			<0.001 <0.0002	0/4							<0.001 <0.0002	0/4
	1,3-9 グロログ ロベ グ (mg/l) チ ウ ラ ム (mg/l)			<0.0002	0/4							<0.0002	0/4
目				<0.0003	0/4							<0.0003	0/4
	チオヘ゜ンカルフ゜(mg/l)			<0.002	0/4							<0.002	0/4
	へ * ン セ * ン (mg/l)			<0.001	0/4							<0.001	0/4
	セ レ ン (mg/l)			<0.001	0/4							<0.001	0/4
	硝酸性窒素及び亜硝酸性窒素 (mg/l)	0.10	0.07	0.18	0/4					0.31	0.21	0.35	0/4
	ふ っ 素 (mg/l)			<0.1	0/4					0.15	0.1	0.2	0/4
	ほ う 素 (mg/l)			<0.1	0/4					0.7	0.3	1.1	1/4
	1,4- シ ゚ オ キ サ ン (mg/l)			<0.005	0/4							<0.005	0/4
	銅 (mg/l)			<0.04	-/6								
特	鉄 (溶 解 性) (mg/l)												
殊項	マンカ゛ン(溶 解 性) (mg/l)												
月日	7 П Д (mg/l)												
-	フェノール類 (mg/l)												
_	1									1			

	水 域 名					 高川						Ш	
	地点名	若	野橋(A【基)	】 生物B【基		1	口橋(A【補)	】,生物B【補	1)			<u></u> (−, −)	
,01	測 定 値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値		x/y
測	定項目								-				-
	7 I / - J (mg/l)			<0.001	-/1								
	クロロホルム (mg/l)			<0.001	-/1								
	ホルムアルデヒド (mg/l)			<0.008	-/1								
				₹0.008	-/1								
	4-t- オクチルフェノール (mg/l) ア ニ リ ン (mg/l)												
	2,4- ジクロロフェノー ル (mg/l)												
	トランス-1,2-ジクロロエチレン(mg/l)												
	1,2 — ジ クロロプロパン (mg/l)												
	p — ジ ク ロ ロ ベ ン ゼ ン (mg/l)												
	イソキサチオン (mg/l)												
	イ ノ キ リ テ オ フ (mg/l) ダ イ ア ジ ノ ン (mg/l)												
	フェニトロチオン (MEP) (mg/l)									-			
	フェートロテオフ (MEP) (mg/l) イソプロチオラン (mg/l)												
	1 ソ ノ ロ ナ オ ラ ノ (mg/l) オ キ シ ン 銅(有 機 銅)(mg/l)												
	クロロタロニル (TPN) (mg/l)												
要監	プロピザミド (mg/l)												
視	ジ ク ロ ル ボ ス (DDVP)(mg/l)												
項目	フェノブカルブ (BPMC)(mg/l)												
	フェックガルッ (BPMC)(lig/l) イプロベンホス (IBP)(mg/l)												
	クロルニトロフェン (CNP)(mg/l)												
	ト ル エ ン (mg/l) キ シ レ ン (mg/l)												
	フタル酸ジエチルヘキシル(mg/l)												
	ニ ッ ケ ル (mg/l) モ リ ブ デ ン (mg/l)												
	ア ン チ モ ン (mg/l)												
	<u>塩 化 ビ ニ ル モ ノ マ ー (mg/l)</u>												
	エピクロロヒドリン (mg/l)												
	全 マ ン ガ ン (mg/l)												
	主 マ フ ガ フ (mg/l) ウ ラ ン (mg/l)												
	P F O S % 2(ng/l)			/0.1	-/1								
	P F O S % 2(ng/l) P F O A % 3(ng/l)			<0.1	-/1 -/1								
	PFOS及びPFOA(ng/l)			<0.2	-/ I -/1								
	アンモニア性窒素 (mg/l)			\∪.ა	/1								
	がりてーが性 室 素 (mg/l) 硝酸性 窒素 (mg/l)	0.10	0.07	0.17	-/4					0.28	0.19	0.33	-/4
	明	0.10	0.07	<0.01	-/4					0.28	0.19	0.05	-/4
	型 明 阪 注 至 条 (mg/l) リ ン 酸 性 リ ン (mg/l)			<0.01	-/4 -/6					0.020	0.02	0.00	/-
その	プログログロス (mg/l) 選 度 (度)			\0.01	70								
他	B												
の項	2 - M I B (μ g/l)												
目	2 - M 1 B (μ g/l) ジ オ ス ミ ン (μ mg/l)									-			
	<u> </u>	3	2	4	-/4					2800	1400	4400	-/4
	塩 分 濃 度 (‰)	J	۷	+	/4					2000	1400	4400	/4
	電 気 伝 導 率 (μ S/cm)	74	65	89	-/6	77	68	95	-/6	12000	2700	36000	-/6
									/ 0	12000	2700	50000	/ 0

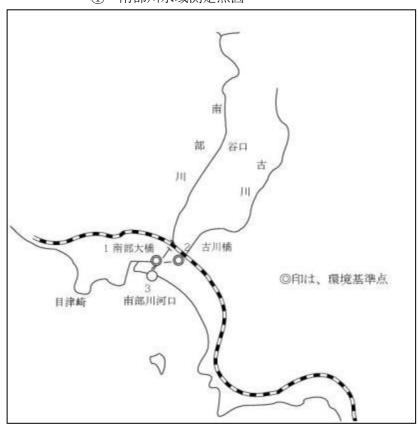
(備考) ※1 x:環境基準に適合しない日数 y:総測定日数 ()内は75%値(備考) ※1 x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 ※2 ペルフルオロオクタンスルホン酸(PFOS) ※3 ペルフルオロオクタン酸(PFOA)

	水 域 名		ŧл в		
	地 点 名			§(-, -)	
_	型点 和 原 和 測 定 値				
測	定項目	平均	最小値	最大値	x/y
	р Н		7.1	8.5	-/6
	D O (mg/l)	9.9	7.9	11	-/6
		(0.6)			
	B O D (mg/l)	0.7	<0.5	1.6	-/6
生	C O D (mg/l)	1.3	0.7	2.1	-/6
活	S S (mg/l)	2	<1	8	-/6
環境	大 腸 菌 数 (CFU/100ml)	86	64	120	-/6
項目	N - ヘキサン抽 出 物 質 (mg/l)				
	全 窒 素 (mg/l)	0.40	0.29	0.50	-/6
	全 燐 (mg/l)	0.016	0.008	0.030	-/6
	全 亜 鉛 (mg/l)	0.002	<0.001	0.003	-/6
	ノニ ル フ ェ ノ ― ル (mg/l)				
	L A S (mg/l)				
	カト * ミウム (mg/l)			<0.0003	0/4
	全 シ ア ン (mg/l)			<0.1	0/4
	鉛 (mg/l)			<0.005	0/4
	六 価 ク ロ ム (mg/l)			<0.02	0/4
	砒 素 (mg/l)			<0.001	0/4
	総 水 銀 (mg/l)			<0.0005	0/4
	アルキル水 銀 (mg/l)				
健	P C B (mg/l)			<0.0005	0/4
	シ * ク ロ ロ メ タ ン (mg/l)			<0.002	0/4
	四塩化炭素(mg/l)			<0.0002	0/4
	1,2- シ			<0.0004	0/4
康	1,1- シ゛クロロェチレン (mg/l)			<0.002	0/4
	シス -1,2- シ クロロエチレン (mg/l)			<0.004	0/4
	1,1,1- トリクロロエタン (mg/l)			<0.01	0/4
	1,1,2- トリクロロエタン (mg/l)			<0.0006	0/4
項	トリクロロエチレン (mg/l)			<0.001	0/4
	テトラクロロエチレン (mg/l)			<0.001	0/4
	1,3- シ゛クロロフ゜ロヘ゜ン (mg/l)			<0.0002	0/4
	チ ウ ラ ム (mg/l)			<0.0006	0/4
目	シマ シ * ン (mg/l)			<0.0003	0/4
	チオヘ゛ンカルフ゜(mg/l)			<0.002	0/4
	へ * ン セ * ン (mg/l)			<0.001	0/4
	セ レ ン (mg/l)			<0.001	0/4
	硝酸性窒素及び亜硝酸性窒素 (mg/l)	0.25	0.16	0.33	0/4
	ふ っ 素 (mg/l)			<0.1	0/4
	ほ う 素 (mg/l)			<0.1	0/4
	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/4
	銅 (mg/l)				
特殊	鉄 (溶 解 性) (mg/l)				
項	マンカ゛ン (溶 解 性) (mg/l)				
目	7 □ Ь (mg/l)				
	フ ェ ノ ー ル 類 (mg/l)				

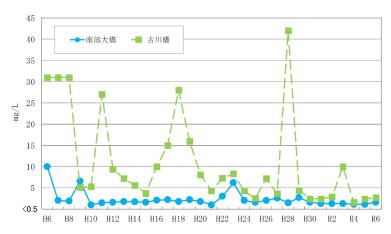
			切目		
地点名			新切目橋		
測 定	値	平均	最小値	最大値	x/y
測定項目	((1)	1 20	秋小师	取八世	^/ y
E P N	(mg/l)				
7 1 / - 1					
	ム (mg/l)				
	F (mg/l)				
4-t- オクチルフェノ-					
ア = リ ン					
2,4- ジクロロフェノー					
トランス-1,2-ジクロロエチレン					
1,2 — ジクロロプロ/					
p — ジクロロベンゼ					
1	ン (mg/l)				
	ン (mg/l)				
フェニトロチオン(ME イ ソ プ ロ チ オ ラ					
	ン (mg/l)				
5 5 5 5 5 5 W (TD					
<u>x</u>					
視	F (mg/l) DVP)(mg/l)				
ê l	PMC)(mg/l)				
イプロベンホス					
クロルニトロフェン(
トルェン	(mg/l)				
+ シ レ ン	(mg/l)				
フタル酸ジエチルヘキシル(m					
ニッケル	(mg/l)				
モ リ ブ デ ン					
アンチモン	/ (mg/l)				
塩化ビニルモノマ	— (mg/l)				
エピクロロヒドリ	ン (mg/l)				
全 マ ン ガ ン	(mg/l)				
ウ ラ ン	(mg/l)				
P F O S *	2(ng/l)				
P F O A ※	3(ng/l)				
PFOS及びPFC	O A (ng/l)				
ア ン モ ニ ア 性 窒	素(mg/l)				
硝 酸 性 窒 素	(mg/l)	0.25	0.16	0.33	-/4
	素 (mg/l)			<0.01	-/4
₹	ン (mg/l)				
の遺産(
のドリハロメダン主放					
B	μ g/l)				
ジオスミン(μ mg/l)				
	ン (mg/l)	6	5	8	-/4
	%)	140	100	000	/2
電気伝導率(μ S/cm)	140	100	200	-/6

(備考) ※1 x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 ※2ペルフルオロオクタンスルホン酸(PFOS) ※3ペルフルオロオクタン酸(PFOA)

2-15 南部川水域水質測定結果


①のとおり3測定点で、それぞれ年12回の測定を実施した。その結果は、③のとおりである。 この河川の環境基準類型(河川の部)は、南部大橋から上流の水域にA、南部川に流入する古川に Bをあてはめている。

BODの 75%値でみると、南部川の環境基準点である南部大橋では、1.6 mg/1 で、環境基準値 (A:2 mg/1) に適合している。また、古川の環境基準点である古川橋では、2.8 mg/1 で、環境基準値 (B:3 mg/1) に適合している。


また、平成 26 年 10 月 10 日付け和歌山県告示第 2598 号で、水生生物保全に係る類型として南部川(南部大橋から上流の水域)を生物 B 類型に指定した。

水生生物保全に係る環境基準項目である全亜鉛【基準値(生物 B: 0.03 mg/L)】、ノニルフェノール【基準値(生物 B: 0.002 mg/L)】、LAS【基準値(生物 B: 0.05 mg/L)】の平均値でみると、環境基準点で環境基準値に適合している。

① 南部川水域測定点図

② 南部川のBOD75%値の推移

③ 南部川水域水質測定結果一覧

	水 域 名				南部	ß JII					古	ЛІ	
	地 点 名	南部	部大橋(A【基	§], 生物B[a	基】)		南部川河	□(-, -)			古川橋(E	3【基】, 一)	
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	х/у
	р Н		7.2	8.0	0/12		6.3	7.8	-/12		4.6	7.8	1/12
	D O (mg/l)	8.6	6.7	11	1/12	7.6	4.4	10	-/12	7.9	5.0	10	0/12
		(1.6)				(1.6)				(2.8)			
	B O D (mg/l)	1.2	<0.5	2.4	1/12	4.4	<0.5	37.0	-/12	11.0	0.6	110	3/12
١	C O D (mg/l)	2.1	1.3	3.3	-/12	6.9	1.7	44	-/12	15.0	3.6	120	-/12
生	S S (mg/l)	1	<1	2	0/12	6	<1	23	-/12	5	2	9	0/12
環境	大 腸 菌 数 (CFU/100ml)	180	24	890	3/12	510	18	2200	-/12	640	76	3500	1/12
項	N - へ キ サ ン 抽 出 物 質 (mg/l)												
目	全 窒 素 (mg/l)	0.46	0.40	0.57	-/6	0.78	0.47	1.20	-/6	1.3	0.74	2.9	-/6
	全 燐 (mg/l)	0.011	0.005	0.020	-/6	0.28	0.014	0.81	-/6	0.58	0.20	2.10	-/6
	全 亜 鉛 (mg/l)	0.005	0.002	0.012	0/6	0.044	0.012	0.078	-/6	0.160	0.035	0.31	-/6
	ノニ ル フェ ノー ル (mg/l)			<0.00006	0/1								
	L A S (mg/l)			<0.0006	0/1								
	カ ト ゜ ミ ウ ム (mg/l)			<0.0003	0/4							<0.0003	0/4
	全 シ ア ン (mg/l)			<0.1	0/4							<0.1	0/4
	鉛 (mg/l)			<0.005	0/4							<0.005	0/4
	六 価 ク ロ ム (mg/l)			<0.02	0/4							<0.02	0/4
	砒 素 (mg/l)			<0.001	0/4							<0.001	0/4
	総 水 銀 (mg/l)			<0.0005	0/4			***************************************				<0.0005	0/4
	ア ル キ ル 水 銀 (mg/l)												
健	P C B (mg/l)												
	シ [*] ク ロ ロ メ タ ン (mg/l)			<0.002	0/4							<0.002	0/4
	四塩化炭素(mg/l)			<0.0002	0/4							<0.0002	0/4
	1,2- シ [*] クロロエタン (mg/l)			<0.0004	0/4							<0.0004	0/4
康	1,1- シ゜クロロェチレン (mg/l)			<0.002	0/4							<0.002	0/4
	シス -1,2- シ゛クロロエチレン (mg/l)			<0.004	0/4							<0.004	0/4
	1,1,1-トリクロロエタン (mg/l)			<0.01	0/4							<0.01	0/4
_	1,1,2- トリクロロエタン (mg/l)			<0.0006	0/4							<0.0006	0/4
項	トリクロロエチレン (mg/l)			<0.003	0/4							<0.003	0/4
	テトラクロロエチレン (mg/l)			<0.001	0/4							<0.001	0/4
	1,3- シ * クロロフ * ロヘ * ン (mg/l)			<0.0002	0/4							<0.0002	0/4
目	チ ウ ラ ム (mg/l)			<0.0006	0/4							<0.0006	0/4
-	シマッソ (mg/l)			<0.0003	0/4							<0.0003	0/4
	チオヘ゜ンカルフ゜(mg/l)			<0.002	0/4							<0.002	0/4
	へ * ン セ * ン (mg/l)			<0.001	0/4							<0.001	0/4
	セ レ ン (mg/l)			<0.001	0/4							<0.001	0/4
	硝酸性窒素及び亜硝酸性窒素(mg/l)		0.31	0.56	0/4					0.58	0.24	1.1	0/4
	ふっ素 (mg/l)	0.2	<0.1	0.5	0/4					0.13	<0.1	0.2	0/4
	ほう 素 (mg/l)		0.1	1.5	1/4					0.30	<0.1	0.8	0/4
	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/4			-				<0.005	0/4
特	銅 (mg/l)												
殊	鉄 (溶解性) (mg/l)												
項	マンカ [*] ン(溶解性) (mg/l)												
目	クロム (mg/l)												
	フェノール類 (mg/l)									<u> </u>			

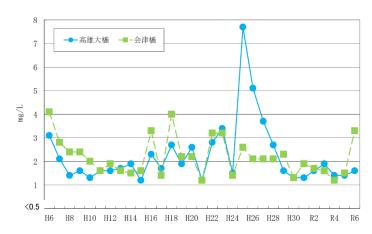
	水 域 名				南 部	邦 川					古	JII	
	地 点 名	南部	部大橋(A【基	基】, 生物B【基	基】)		南部川河	□(-, -)			古川橋(E	3【基】, 一)	
測	測定値 定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	E P N (mg/l)												
	フ ェ ノ ー ル (mg/l)			<0.001	-/1								
	クロロホルム (mg/l)			<0.001	-/1								
	ホルムアルデヒド (mg/l)			<0.008	-/1								
	4-t- オクチルフェノール(mg/l)												
	ア ニ リ ン (mg/l)												
	2,4- ジクロロフェノー ル (mg/l)												
	トランス-1,2-ジクロロエチレン(mg/l)												
	1,2 — ジ ク ロ ロ プ ロ パ ン (mg/l)												
	p ー ジ ク ロ ロ ベ ン ゼ ン (mg/l)												
	イソキサチオン (mg/l)												
	ダ イ ア ジ ノ ン (mg/l)												
	フェニトロチオン(MEP)(mg/l)												
	イソプロチオラン (mg/l)												
	オキシン銅(有機銅)(mg/l)												
要	クロロタロニル(TPN)(mg/l)												
監視	プ ロ ピ ザ ミ ド (mg/l)												
項	ジ ク ロ ル ボ ス (DDVP)(mg/l)												
目	フェノブ カル ブ (BPMC)(mg/l)												
	イプロベンホス(IBP)(mg/l)												
	クロルニトロフェン (CNP)(mg/l)												
	ト ル エ ン (mg/l)												
	キ シ レ ン (mg/l)												
	フタル酸ジエチルヘキシル(mg/l)			<0.0001	-/1								
	ニ ッ ケ ル (mg/l)												
	モ リ ブ デ ン (mg/l)												
	ア ン チ モ ン (mg/l)												
	塩 化 ビ ニ ル モ ノ マ ー (mg/l)			<0.0002	-/1								
	エピクロロヒドリン (mg/l)			<0.00003	-/1								
	全 マ ン ガ ン (mg/l)												
	ウ ラ ン (mg/l)	1.7	1.7	1.7	-/1								
	P F O S ※ 2(ng/l)	0.5		0.5	-/1								
	P F O A ※ 3(ng/l)	1.1		1.1	-/1								
<u></u>	PFOS及びPFOA (ng/l)	1.7		1.7	-/1								
	ア ン モ ニ ア 性 窒 素 (mg/l)												
	硝酸性窒素 (mg/l)	0.40	0.3	0.55	-/4					0.51	0.23	0.87	-/4
	亜 硝 酸 性 窒 素 (mg/l)			<0.01	-/4					0.07	<0.01	0.24	-/4
そ	リン酸性リン (mg/l)			<0.01	-/6			-		0.28	0.10	0.64	-/6
の他	演 度 (度)												
の	トリハロメタン 生成 能 (mg/l)												
項目	2 - M I B (μ g/l)												
	ジ オ ス ミ ン (μ mg/l)	0777	0.55	0077						4655		0077	
	塩化物イオン(mg/l)	2700	330	9200	-/4					1200	260	2900	-/4
	塩分濃度(‰)		4000	15000	/-	70	00	10555	,-	0000		0777	,_
	電 気 伝 導 率 (μ S/cm)	5700	1200	15000	-/6	7200	2800	12000	-/6	3600	770	9700	-/6

(備考) ※1 x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 ※2 ペルフルオロオクタンスルホン酸(PFOS) ※3 ペルフルオロオクタン酸(PFOA)

2-16 左会津川水域水質測定結果

①のとおり4測定点で、それぞれ年12回の測定を実施した。その結果は、③のとおりである。 この河川は、環境基準類型(河川の部)Aをあてはめている。

BODの75%値でみると、環境基準点である高雄大橋で1.6~mg/1、会津橋で3.3~mg/1であり、高雄大橋で環境基準値 (A:2~mg/1) に適合しているが、会津橋では環境基準を超過している。


また、平成 26 年 10 月 10 日付け和歌山県告示第 2598 号で、水生生物保全に係る類型として左会 津川(田辺大橋から上流の水域)を生物 B 類型に指定した。

水生生物保全に係る環境基準項目である全亜鉛【基準値(生物 B:0.03 mg/L)】、ノニルフェノール【基準値(生物 B:0.002 mg/L)】、LAS【基準値(生物 B:0.05 mg/L)】の平均値でみると、全ての環境基準点で環境基準値に適合している。

① 左会津川水域測定点図

② 左会津川のBOD75%値の推移

③ 左会津川水域水質測定結果一覧

	水 域 名	左 会 津 川											
	地 点 名	秋	津橋(A【補)	, 生物B【補	i])	E	座橋(A【補	】,生物B【補	勿B【補】) 高雄大橋(A【基】, 生				甫】)
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	х/у
	рН		7.4	8.3	0/12		7.4	8.2	0/12		7.4	8.3	0/12
	D O (mg/l)	10	7.7	14	0/12	9.6	7.6	12	0/12	10	7.8	13	0/12
		(0.9)				(1.1)				(1.6)			
	B O D (mg/l)	0.8	<0.5	1.8	0/12	0.9	<0.5	1.9	0/12	1.2	<0.5	2.5	1/12
生	C O D (mg/l)	1.8	<0.5	2.4	-/12	2.1	1.0	3.1	-/12	2.8	1.9	3.9	-/12
活	S S (mg/l)	2	<1	4	0/12	1	<1	3	0/12	2	1	5	0/12
環境	大 腸 菌 数 (CFU/100ml)	120	2	280	0/12	88	41	162	0/12	170	39	330	1/12
項	N - へ キ サ ン 抽 出 物 質 (mg/l)												
目	全 窒 素 (mg/l)	0.67	0.45	0.84	-/6	0.97	0.59	1.4	-/6	0.98	0.66	1.5	-/6
	全 燐 (mg/l)	0.036	0.027	0.048	-/6	0.064	0.042	0.100	-/6	0.089	0.050	0.16	-/6
	全 亜 鉛 (mg/l)			<0.001	0/6	0.001	0.001	0.003	0/6	0.002	0.001	0.003	0/6
	ノニ ル フェ ノー ル (mg/l)												
	L A S (mg/l)												
	カ ト ゛ ミ ウ ム (mg/l)											<0.0003	0/4
	全 シ ア ン (mg/l)											<0.1	0/4
	鉛 (mg/l)											<0.005	0/4
	六 価 ク ロ ム (mg/l)											<0.02	0/4
	础 素 (mg/l)											<0.001	0/4
	総 水 銀 (mg/l)											<0.0005	0/4
	アルキル水 銀 (mg/l)												
健	P C B (mg/l) シ ^ ク ロ ロ メ タ ン (mg/l)											<0.002	0/4
	四塩化炭素(mg/l)											<0.002	0/4
	1,2- シ゛クロロエタン (mg/l)											<0.0002	0/4
康	1,1- シ クロロエチレン (mg/l)											<0.002	0/4
康	シス -1,2- シ゛クロロエチレン (mg/l)											<0.004	0/4
	1,1,1-トリクロロエタン (mg/l)											<0.01	0/4
	1,1,2- トリクロロエタン (mg/l)											<0.0006	0/4
項	トリクロロエチレン (mg/l)											<0.003	0/4
	テトラクロロエチレン (mg/l)											<0.001	0/4
	1,3- シ゛クロロフ゜ロへ゜ン (mg/l)											<0.0002	0/4
	チ ウ ラ ム (mg/l)											<0.0006	0/4
目	シ マ シ ゜ ン (mg/l)											<0.0003	0/4
	チオへ゛ンカルフ゛(mg/l)											<0.002	0/4
	へ ・ ン セ ・ ン (mg/l)											<0.001	0/4
	セ レ ン (mg/l)											<0.001	0/4
	硝酸性窒素及び亜硝酸性窒素 (mg/l)									0.76	0.58	0.98	0/4
	ふ っ 素 (mg/l)											<0.1	0/4
	ほ う 素 (mg/l)											<0.1	0/4
	1,4- シ * オ キ サ ン (mg/l)											<0.005	0/4
4.4	銅 (mg/l)									-	ļ		
特殊													
項	マンカ [°] ン(溶解性) (mg/l)												
目													
	フェノール類 (mg/l)												

	水 域 名							津	JII				
	地 点 名	利	k津橋(A【補	】,生物B【補	i])	E	座橋(A【補	】,生物B【補])	高雄大橋(A【基】, 生物			甫】)
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	х/у
	E P N (mg/l)												
	フェノ — ル (mg/l)												
	クロロホルム (mg/l)												
	ホルムアルデヒド (mg/l)												
	4-t- オクチルフェノール(mg/l)												
	ア ニ リ ン (mg/l)												
	2,4- ジクロロフェノー ル (mg/l)												
	トランス-1,2-ジクロロエチレン(mg/l)												
	1,2 — ジクロロプロパン(mg/l)												
	p ー ジ ク ロ ロ ベ ン ゼ ン (mg/l)												
	イソキサチオン (mg/l)												
	ダ イ ア ジ ノ ン (mg/l)												
	フェニトロチオン(MEP)(mg/l)												
	イソプロチオラン(mg/l)												
	オキシン銅(有機銅)(mg/l)												
要	クロロタロニル(TPN)(mg/l)												
監視	プ ロ ピ ザ ミ ド (mg/l)												
項	ジ ク ロ ル ボ ス (DDVP)(mg/l)												
目	フェノブ カル ブ (BPMC)(mg/l)												
	イプロベンホス(IBP)(mg/l)												
	クロルニトロフェン (CNP)(mg/l)												
	トルエン (mg/l)												
	キ シ レ ン (mg/l)												
	フタル酸ジエチルヘキシル(mg/l)											<0.0001	-/1
	ニ ッ ケ ル (mg/l)												
	モ リ ブ デ ン (mg/l)												
	ア ン チ モ ン (mg/l)												
	塩 化 ビ ニ ル モ ノ マ ー (mg/l)											<0.0002	-/1
	ェピクロロヒドリン (mg/l)											<0.00003	-/1
	全 マ ン ガ ン (mg/l)												
	ウ ラ ン (mg/l)									1.4	1.4	1.4	-/1
	P F O S ※ 2(ng/l)									0.7		0.7	-/1
	P F O A ※ 3(ng/l)									0.6		0.6	-/1
<u>_</u>	PFOS及びPFOA(ng/l)									1.4		1.4	-/1
	ア ン モ ニ ア 性 窒 素 (mg/l)												
	研 酸 性 窒 素 (mg/l)									0.74	0.57	0.96	-/4
	亜 硝 酸 性 窒 素 (mg/l)									0.01	<0.01	0.02	-/4
そ	リン酸性リン (mg/l)									0.06	0.03	0.12	-/6
の他	演 度 (度)												
の	トリハロメタン 生成 能 (mg/l)												
項目	2 - M I B (μ g/l)												
	ジ オ ス ミ ン (μ mg/l)									17	10	0.1	/*
	塩化物イオン(mg/l)									17	12	24	-/4
	塩分濃度(‰)	140	100	170	/0	000	100	000	/6	500	150	0000	/2
<u></u>	電 気 伝 導 率 (μ S/cm)	140	120	170	-/6	230	160	300	-/6	530	150	2200	-/6

(備考) ※1 x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 ※2 ペルフルオロオクタンスルホン酸(PFOS) ※3 ペルフルオロオクタン酸(PFOA)

	水 域 名	左 会 津 川							
	地 点 名	会津橋(A【基】, 生物B【基】)							
測	測 定 値 定 項 目		平均	最小値	最大値	x/y			
	р Н			7.2	7.8	0/12			
	D O	(mg/l)	9.2	5.3	12	1/12			
			(3.3)						
	B O D	(mg/l)	1.9	0.8	3.8	5/12			
	C O D	(mg/l)	4.3	2.4	7.5	-/12			
生活	s s	(mg/l)	2	1	9	0/12			
環境	大腸菌数(CFU/	′100ml)	600	72	2400	5/12			
項	N - へ キ サ ン 抽 出 物 質	(mg/l)			<0.5	-/6			
目	全 窒 素	(mg/l)	0.85	0.57	1.0	-/6			
	全 燐	(mg/l)	0.092	0.062	0.160	-/6			
	全 亜 鉛	(mg/l)	0.004	0.001	0.008	0/6			
	ノニルフェノール	(mg/l)			<0.00006	0/1			
	L A S	(mg/l)			<0.0006	0/1			
	カト゛ミウム	(mg/l)			<0.0003	0/4			
	全 シ ァ ン	(mg/l)			<0.1	0/4			
	鉛	(mg/l)			<0.005	0/4			
	六価クロム	(mg/l)			<0.02	0/4			
	砒素	(mg/l)	0.001	<0.001	0.001	0/4			
	総 水 銀	(mg/l)			<0.0005	0/4			
	アルキル水銀	(mg/l)							
健	P C B	(mg/l)							
	シ * ク ロ ロ メ タ ン	(mg/l)			<0.002	0/4			
	四塩化炭素	(mg/l)			<0.0002	0/4			
	1,2- ў трпптя х	(mg/l)			<0.0004	0/4			
康	1,1- シ゛クロロェチレン	(mg/l)			<0.002	0/4			
	シス -1,2- シ゛クロロエチレン	(mg/l)			<0.004	0/4			
	1,1,1-トリクロロエタン	(mg/l)			<0.01	0/4			
	1,1,2- トリクロロエタン	(mg/l)			<0.0006	0/4			
項	トリクロロエチレン	(mg/l)			<0.003	0/4			
		(mg/l)			<0.001	0/4			
	1,3- シ゛クロロフ゜ロヘ゜ン	(mg/l)			<0.0002	0/4			
目	f 0 5 L	(mg/l)			<0.0006	0/4			
-	シマシ゛ン	(mg/l)			<0.0003	0/4			
	チオヘ゛ンカルフ゛	(mg/l)			<0.002	0/4			
	^ * > t * >	(mg/l)			<0.001	0/4			
	セレン	(mg/l)			<0.001	0/4			
	硝酸性窒素及び亜硝酸性窒素		0.58	0.39	0.85	0/4			
	<u>ふっ</u> 素	(mg/l)	0.3	0.1	0.5	0/4			
	ほ う 素	(mg/l)	1.0	0.1	2.0	2/4			
	1,4- y * t + t y	(mg/l)			<0.005	0/4			
特	銅	(mg/l)							
殊	鉄 (溶解性)	(mg/l)							
項	マンカ・ン(溶解性)	(mg/l)							
目	クロム	(mg/l)							
	フェノール類	(mg/l)							

	水 域 名	左 会 津 川						
	地 点 名	会津橋(A【基】, 生物B【基】)						
測	測 定 値 定 項 目	平均	最小値	最大値	x/y			
	E P N (mg/l)							
	フ ェ ノ ー ル (mg/l)			<0.001	-/1			
	ク ロ ロ ホ ル ム (mg/l)			<0.001	-/1			
	ホルムアルデヒド (mg/l)			<0.008	-/1			
	4-t- オクチルフェノール (mg/l)							
	ア ニ リ ン (mg/l)							
	2,4- ジ ク ロ ロ フ ェ ノ ー ル (mg/l)							
	トランス-1,2-ジクロロエチレン(mg/l)							
	1,2 — ジ ク ロ ロ プ ロ パ ン (mg/l)							
	p — ジ ク ロ ロ ベ ン ゼ ン (mg/l)							
	イソキサチオン (mg/l)							
	ダ イ ア ジ ノ ン (mg/l)							
	フェニトロチオン (MEP) (mg/l)							
	イソプロチオラン(mg/l) オキシン銅(有機銅)(mg/l)							
	オキシン銅(有機銅)(mg/l) クロロタロニル(TPN)(mg/l)							
要監								
視項	ブ ロ ビ ザ ミ ド (mg/l) ジ ク ロ ル ボ ス (DDVP)(mg/l)							
月	フェノブカルブ (BPMC)(mg/l)							
	イプロベンホス(IBP)(mg/l)							
	クロルニトロフェン (CNP)(mg/l)							
	ト ル エ ン (mg/l)							
	キ シ レ ン (mg/l)							
	フタル酸ジエチルヘキシル(mg/l)			<0.0001	-/1			
	ニ ッ ケ ル (mg/l)							
	モ リ ブ デ ン (mg/l)							
	ア ン チ モ ン (mg/l)							
	塩 化 ビニ ル モ ノマ ー (mg/l)			<0.0002	-/1			
	エピクロロヒドリン (mg/l)			<0.00003	-/1			
	全 マ ン ガ ン (mg/l)							
	ウ ラ ン (mg/l)	1.1	1.1	1.1	-/1			
	P F O S <u></u> % 2(ng/l)	0.6		0.6	-/1			
	P F O A ※ 3(ng/l)	0.5		0.5	-/1			
	PFOS及びPFOA(ng/l)	1.1		1.1	-/1			
	ア ン モ ニ ア 性 窒 素 (mg/l)							
	硝 酸 性 窒 素 (mg/l)	0.57	0.38	0.84	-/4			
	亜 硝 酸 性 窒 素 (mg/l)	0.01	<0.01	0.01	-/4			
そ	リン酸性リン (mg/l)	0.06	0.04	0.13	-/6			
の他	濁 度 (度)							
の	トリハロメタン 生成 能 (mg/l)							
項目	2 — M Ι Β (μ g/l)							
-	ジ オ ス ミ ン (μ mg/l)							
	塩 化 物 イ オ ン (mg/l)	4500	470	8600	-/4			
	塩分濃度(‰)	450	47	046	,-			
	電 気 伝 導 率 (μ S/cm)	15000	1700	31000	-/6			

(備考) ※1 x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 ※2 ペルフルオロオクタンスルホン酸(PFOS) ※3 ペルフルオロオクタン酸(PFOA)

2-17 富田川水域水質測定結果

①のとおり合計 3 測定点で、滝尻橋で年 4 回、その他 2 測定点でそれぞれ年 6 回の測定を実施した。その結果は、3 のとおりである。

この河川は、環境基準類型(河川の部)Aをあてはめている。

BODの75%値でみると、富田川の環境基準点である富田橋では、0.8 mg/1 で、環境基準値 (A:2 mg/1) に適合している。

また、平成 26 年 10 月 10 日付け和歌山県告示第 2598 号で、水生生物保全に係る類型として、富田川 (滝尻橋から上流の水域) を生物 A 類型に、富田川 (河口から滝尻橋までの水域) を生物 B 類型に指定した。

水生生物保全に係る環境基準項目である全亜鉛【基準値(生物 A, B: 0.03 mg/L)】、ノニルフェノール【基準値(生物 A: 0.001 mg/L、生物 B: 0.002 mg/L)】、LAS【基準値(生物 A: 0.03 mg/L、生物 B: 0.05 mg/L)】の平均値でみると、全ての環境基準点で環境基準値に適合している。

① 富田川水域測定点図

② 富田川のBOD75%値の推移

③ 富田川水域水質測定結果一覧

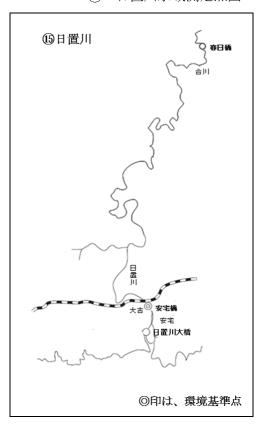
	水 域 名						富田	B JII						
	地 点 名	滝	鼠尻橋(A【補	】,生物A【基])	生	馬橋(A【補	】,生物B【補	i])	富	田橋(A【基	】, 生物B【基】)		
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	
	р Н		7.5	7.8	0/4		7.3	7.8	0/6		7.2	7.6	0/6	
	D O (mg/l)	9.7	8.8	11	0/4	10	8.1	11	0/6	9	8.1	10	0/6	
		(0.6)				(1.2)				(8.0)				
	B O D (mg/l)	0.6	<0.5	0.7	0/4	0.9	<0.5	2.1	1/6	0.9	0.5	1.8	0/6	
生	C O D (mg/l)	0.7	0.6	0.9	-/4	1.1	<0.5	2.4	-/6	1.5	1.1	1.8	-/6	
活	S S (mg/l)			<1	0/4	1	<1	1	0/6	2	<1	3	0/6	
環境	大 腸 菌 数 (CFU/100ml)	28	17	37	0/4	180	43	780	0/6	52	22	86	0/6	
項目	N - へ キ サ ン 抽 出 物 質 (mg/l)													
"	全 窒 素 (mg/l)	0.18	80.0	0.29	-/4	0.31	0.19	0.39	-/6	0.47	0.33	0.77	-/6	
	全 燐 (mg/l)	0.004	<0.003	0.005	-/4	0.021	0.006	0.047	-/6	0.031	0.017	0.043	-/6	
	全 亜 鉛 (mg/l)			<0.001	0/4	0.001	<0.001	0.001	0/6	0.002	0.001	0.004	0/6	
	ノニ ル フェ ノー ル (mg/l)			<0.00006	0/1							<0.00006	0/1	
	L A S (mg/l)			<0.0006	0/1					<u> </u>		<0.0006	0/1	
	カ ト ゜ ミ ウ ム (mg/l)											<0.0003	0/4	
	全 シ ア ン (mg/l)											<0.1	0/4	
	鉛 (mg/l)											<0.005	0/4	
	六価クロム (mg/l)											<0.02	0/4	
	础 素 (mg/l)										<u> </u>	<0.001	0/4	
	総 水 銀 (mg/l)											<0.0005	0/4	
	アルキル水 銀 (mg/l)													
健	P C B (mg/l)											<0.0005	0/4	
	シ * ク ロ ロ メ タ ン (mg/l)											<0.002	0/4	
	四塩化炭素(mg/l)											<0.0002	0/4	
	1,2- シ ゙ ク ロ ロ エ タ ン (mg/l)											<0.0004	0/4	
康	1,1- シ											<0.002	0/4	
	シス -1,2- シ゛クロロエチレン (mg/l)											<0.004	0/4	
	1,1,1- ト リ ク ロ ロ エ タ ン (mg/l)										-	<0.01	0/4	
項	1,1,2- ト リ ク ロ ロ エ タ ン (mg/l)										-	<0.0006	0/4	
	トリクロロエチレン (mg/l)											<0.001	0/4	
	テトラクロロエチレン (mg/l) 1,3− シ											<0.001	0/4	
	1,3- / リロロ ロ										-	<0.0002 <0.0006	0/4	
目												<0.0003	0/4	
	チオヘ゜ンカルフ゜(mg/l)											<0.0003	0/4	
	へ ・ ン セ ・ ン (mg/l)											<0.002	0/4	
	セ レ ン (mg/l)											<0.001	0/4	
	硝酸性窒素及び亜硝酸性窒素(mg/l)									0.28	0.17	0.46	0/4	
	ふっ素 (mg/l)											<0.1	0/4	
	ほう素 (mg/l)											<0.1	0/4	
	1,4- シ * オ キ サ ン (mg/l)											<0.005	0/4	
	銅 (mg/l)													
特	鉄 (溶 解 性) (mg/l)													
殊	マンカ°ン(溶解性)(mg/l)													
項目	7 П Д (mg/l)													
	フェノール 類 (mg/l)													
	: // >* (118/1/					L				1				

	水 域 名						富田	田 川					
	地 点 名	滝	匠橋(A【補	】,生物A【基])	生	馬橋(A【補], 生物B【補	i])	富	田橋(A【基)	】,生物B【基])
測	測定値 定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	E P N (mg/l)												
	フ ェ ノ ー ル (mg/l)			<0.001	-/1							<0.001	-/1
	クロロホルム (mg/l)			<0.001	-/1			***************************************				<0.001	-/1
	ホルムアルデヒド (mg/l)			<0.008	-/1							<0.008	-/1
	4-t- オクチルフェノー ル (mg/l)												
	ア ニ リ ン (mg/l)												
	2,4- ジクロロフェノー ル (mg/l)												
	トランス-1,2-ジクロロエチレン(mg/l)												
	1,2 — ジ クロロプロパン(mg/l)												
	p ー ジ ク ロ ロ ベ ン ゼ ン (mg/l)												
	イ ソ キ サ チ オ ン (mg/l)							-					
	ダ イ ア ジ ノ ン (mg/l)												
	フェニトロチオン(MEP)(mg/l)												
	イソプロチオラン (mg/l)												
	オキシン銅(有機銅)(mg/l)							-					
要監	クロロタロニル(TPN)(mg/l)					-				-			
視	プロピザミド (mg/l)												
項目	ジ ク ロ ル ボ ス (DDVP)(mg/l)												
	フェノブカルブ (BPMC)(mg/l)												
	イ プ ロ ベ ン ホ ス (IBP)(mg/l) クロルニトロフェン (CNP)(mg/l)												
	<u> </u>									-			
	ナ シ レ ン (mg/l)												
	フタル酸ジエチルヘキシル(mg/l)												
	ニ ッ ケ ル (mg/l)												
	モ リ ブ デ ン (mg/l)												
	ア ン チ モ ン (mg/l)												
	塩 化 ビ ニ ル モ ノマ ー (mg/l)												
	エピクロロヒドリン (mg/l)							-					
	全 マ ン ガ ン (mg/l)												
	ウ ラ ン (mg/l)												
	P F O S ※ 2(ng/l)									0.2		0.2	-/1
	P F O A ※ 3(ng/l)									0.2		0.2	-/1
	PFOS及びPFOA(ng/l)									0.5		0.5	-/1
	ア ン モ ニ ア 性 窒 素 (mg/l)												
	硝酸性窒素(mg/l)									0.27	0.16	0.45	-/4
	亜 硝 酸 性 窒 素 (mg/l)											<0.01	-/4
そ	リ ン 酸 性 リ ン (mg/l)									0.02	0.01	0.02	-/6
の	濁 度 (度)												
他の	トリハロメタン 生 成 能 (mg/l)												
項目	2 — Μ Ι Β (μ g/l)												
	ジ オ ス ミ ン (μ mg/l)												
	塩 化 物 イ オ ン (mg/l)									35	4	120	-/4
	塩 分 濃 度 (‰)												
	電 気 伝 導 率 (μ S/cm)					110	86	160	-/6	2200	99	10000	-/6

(備考) ※1 x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 ※2 ペルフルオロオクタンスルホン酸(PFOS) ※3 ペルフルオロオクタン酸(PFOA)

2-18 日置川水域水質測定結果

①のとおり合計 3 測定点で、春日橋で年 4 回、その他 2 測定点でそれぞれ年 6 回の測定を実施した。その結果は、3 のとおりである。


この河川は、環境基準類型(河川の部)AAをあてはめている。

BODの75%値でみると、日置川の環境基準点である安宅橋では、0.5 mg/1 で、環境基準値(AA: 1 mg/1)に適合している。

また、平成26年10月10日付け和歌山県告示第2598号で、水生生物保全に係る類型として、日置川(殿山ダムから上流の水域)を生物A類型に、日置川(日置川大橋及び日置川小橋から殿山ダムまでの水域)を生物B類型に指定した。

水生生物保全に係る環境基準項目である全亜鉛【基準値(生物 A, B: 0.03 mg/L)】、ノニルフェノール【基準値(生物 A: 0.001 mg/L、生物 B: 0.002 mg/L)】、LAS【基準値(生物 A: 0.03 mg/L、生物 B: 0.05 mg/L)】の平均値でみると、全ての環境基準点で環境基準値に適合している。

① 日置川水域測定点図

② 日置川のBOD75%値の推移

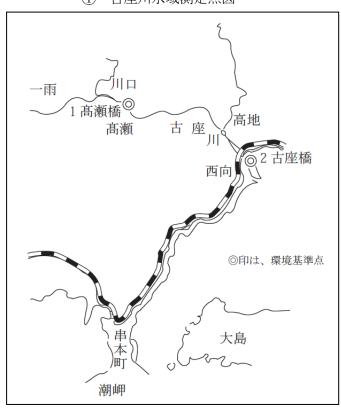
③ 日置川水域水質測定結果一覧

	水域名	7		,				置 川					
	地点名		日橋(AA【補	i】,生物A【基	集】)	安		<u>'''</u> {	表】)	日置	川大橋(AA	補】生物B	【補】)
291	測 定 値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
測	定項目 H		7.3	7.6	0/4		7.1	7.4	0/6		6.8	8.2	0/6
	D O (mg/l)	10	9.2	11	0/4	10	8.8	10	0/6	9.5	8.4	10	0/6
		(<0.5)				(0.5)				(<0.5)			-
	B O D (mg/l)			<0.5	0/4	0.6	<0.5	0.9	0/6	0.6	<0.5	0.9	0/6
<u>ا</u> ـ	C O D (mg/l)	0.8	0.5	0.9	-/4	1.0	0.6	1.7	-/6	1.0	0.5	1.6	-/6
生活	S S (mg/l)			<1	0/4	1	<1	1	0/6	1	<1	1	0/6
環境	大 腸 菌 数 (CFU/100ml)	44	21	78	2/4	36	10	74	2/6	27	4	86	1/6
項	N - へ キ サ ン 抽 出 物 質 (mg/l)												
目	全 窒 素 (mg/l)	0.19	0.09	0.31	-/4	0.20	0.10	0.32	-/6	0.18	0.10	0.3	-/6
	全 燐 (mg/l)	0.003	<0.003	0.003	-/4	0.006	<0.003	0.009	-/6	0.007	0.003	0.009	-/6
	全 亜 鉛 (mg/l)			<0.001	0/4	0.001	<0.001	0.001	0/6			<0.001	0/6
	ノニ ル フェ ノー ル (mg/l)			<0.00006	0/1			<0.00006	0/1				
	L A S (mg/l)			<0.0006	0/1			<0.0006	0/1				
	カ ト ゜ ミ ウ ム (mg/l)							<0.0003	0/4				
	全 シ ア ン (mg/l)							<0.1	0/4				
	鉛 (mg/l)							<0.005	0/4				
	六 価 ク ロ ム (mg/l)							<0.02	0/4				
	砒 素 (mg/l)							<0.001	0/4				
	総 水 銀 (mg/l)							<0.0005	0/4				
	アルキル水 銀 (mg/l)							(0.0005	0/4				
健	P C B (mg/l) シ ・ ク ロ ロ メ タ ン (mg/l)							<0.0005	0/4				
								<0.002	0/4				
	四 塩 化 炭 素 (mg/l)							<0.0002	0/4				
	1,1- シ クロロエチレン (mg/l)							<0.0004	0/4				
康	シス -1,2- シ クロロエチレン (mg/l)							<0.002	0/4				
	1,1,1-トリクロロエタン (mg/l)							<0.01	0/4				
	1,1,2-トリクロロエタン (mg/l)							<0.0006	0/4				
項	トリクロロエチレン (mg/l)							<0.001	0/4				
	テトラクロロエチレン (mg/l)							<0.001	0/4				
	1,3- シ ^ クロロフ ° ロヘ ° ン (mg/l)							<0.0002	0/4				
	チ ウ ラ ム (mg/l)							<0.0006	0/4				
目	シマシ ・ ン (mg/l)							<0.0003	0/4				
	チオへ゜ンカルフ゜ (mg/l)							<0.002	0/4				
	へ ・ ン セ ・ ン (mg/l)							<0.001	0/4				
	セ レ ソ (mg/l)							<0.001	0/4				
	硝 酸 性 窒 素 及 び 亜 硝 酸 性 窒 素 (mg/l)					0.15	0.07	0.23	0/4				
	ふ っ 素 (mg/l)							<0.1	0/4				
	ほ う 素 (mg/l)							<0.1	0/4				
	1,4- シ * オ キ サ ン (mg/l)							<0.005	0/4				
د ر	銅 (mg/l)												
特殊													
項	マンカ゜ン(溶解性) (mg/l)												
目	7 □ Δ (mg/l)												
	フェノール類 (mg/l)												

独立 独立 独立 田田 平均 田田 田田 田田 田田 田田 田田		水 域 名						日 置	置 川					
第 支 項目		地 点 名	春	日橋(AA【補	i】, 生物A【基	&])	安	宅橋(AA【基], 生物B【	基】)	日置	川大橋(AA	【補】, 生物B	【補】)
フェノー 5 (mg/0)	浿		平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	х/у
		E P N (mg/l)												
# ボルムアルデヒド (me/0) 1		フ ェ ノ ー ル (mg/l)			<0.001	-/1			<0.001	-/1				
中子 クテルフェノール (mg/l)		クロロホルム (mg/l)			<0.001	-/1			<0.001	-/1				
ア = リ ン (mex)		ホルムアルデヒド (mg/l)			<0.008	-/1			<0.008	-/1				
24・ジクロロフェノール (mg/) トランス・12・ジクロロブロバン (mg/) ロージクロコブロバン (mg/) オ イ ア ジ ノ ン (mg/) フェニトロチオン (mg/) オ イ ア ジ ノ ン (mg/) フェニトロチオン (mg/) オ イ ア ジ ノ ン (mg/) フェニトロチオン (mg/) オ キャン 類 (有 横 横) (mg/) オ チャン 類 (有 横 横) (mg/) カ コ ロ ビ ザ ミ ド (mg/) フ コ ビ ザ ミ ド (mg/) フ コ レ ボ ス (00VP/mg/) フ コ レ ガ ス (00VP/mg/) フ コ ノ カ ル ブ (0mg/) カ フ ロ ル ボ ス (00VP/mg/) フ フ ル エ ン (mg/) キャン レ (mg/) キャン レ (mg/) カ フ ル に ア ン (mg/) エ フ ク ル (mg/) カ カ ボ カ (mg/) モ リ ブ デ ン (mg/) エ ビ ク ロ ロ ヒ ドリン (mg/) エ ビ ク ロ ロ ヒ ドリン (mg/) ア ン チャン (mg/) エ ビ ク ロ ロ ヒ ドリン (mg/) ア ン チャン (mg/) カ カ ボ カ (mg/) ア ン チャン (mg/) カ カ カ (mg/)		4-t- オクチルフェノール (mg/l)												
キランス-12-ジクロロエチレン(mg/l)		ア ニ リ ン (mg/l)												
12 - ジクロロブロバン(mg/l)		2,4- ジクロロフェノー ル (mg/l)												
□ - ジクロロベンゼン(me/l)		トランス-1,2-ジクロロエチレン(mg/l)												
イソキサチオン (mg/n) ダイアジノン (mg/n) フェニトロチオン(mg/n) フェニトロチオン (mg/n) オキシン鏡(有機類) (mg/n) カロリロニル (TPN) (mg/n) プロピザミド (mg/n) プロピガス (BPMcN/mg/n) フェノブカルブ (BPMcN/mg/n) アエノブカルブ (BPMcN/mg/n) トルエン (mg/n) キシレン (mg/n) キシレン (mg/n) カカルボシル(mg/n) モリブデン (mg/n) エピクロロヒドリン (mg/n) 塩化ビニルモノマー (mg/n) 塩化ビニルモノマー (mg/n) カラト O S ※ 2(mg/n) ア ファン (mg/n) ア アンチモン (mg/n) 東 F O A ※ 3(mg/n) ア F O S ※ 3(mg/n) ア ア・フ・モニア 性窒素 (mg/n)		1,2 — ジクロロプロパン (mg/l)												
ダイアジノン (mg/n) フェニトロチオン (MEP) (mg/n) イソプロテオラン (mg/n) オキシン網 (有 推 編 所) (mg/n) プロロタロニル (TPN) (mg/n) ブロス (MEP) プロス アブカル ブ (BPM/OK)mg/n ブロス イブカル ブ (BPM/OK)mg/n プロルニトロフェン (CNNP/mg/n) ブロルニトロフェン (CNNP/mg/n) トル エン (mg/n) トル エン (mg/n) キシレン (mg/n) ブリル (mg/n) モリブデン (mg/n) エピコルキンル(mg/n) エピコルモノマー (mg/n) エピコルモノマー (mg/n) エピクロロドドリン (mg/n) スリン (mg/n) ウラン (mg/n) (01 -/1 アンモア 性 壁 素 (mg/n) (02 -/1 アンモニア 性 壁 素 (mg/n) (03 -/1 アンモニア 性 壁 素 (mg/n) (01 -/4 リン 酸 性 リン (mg/n) (001 -/4 リハロメタン 生成 能 (mg/n) (001 -/4 リン 酸 性 物 イオン (mg/n) (01 -/4 リン 酸 性 物 イオン (mg/n) (02 -/4 リア・リハロメタン 生成 能 (mg/n) (01 -/4 リア・リストラス (Mg/n) (02 -/4 リア・リストラス (Mg/n) (02 -/4		p — ジ ク ロ ロ ベ ン ゼ ン (mg/l)												
フェニトロチオン (MEP) (mg/l) イソブロチオラン (mg/l) オキシン飼 (有機関) (mg/l) カウロタロニル (TFN) (mg/l) グロログロニル (TFN) (mg/l) プロピザミド (mg/l) フェノブカルブ (SPMC)(mg/l) イブロベンホス (SPVmg/l) クロルニトロフェン (CNP)(mg/l) トルエン (mg/l) トルエン (mg/l) モリブデン (mg/l) モリブデン (mg/l) エピクロロヒドリン (mg/l) エピクロロヒドリン (mg/l) カン・チモン (mg/l) エピクロロヒドリン (mg/l) アン・チェン (mg/l) ロカードロンス (mg/l)														
# キシン類 (有機 製) (mg/l)														
### ### ### ### #### ################														
要 覧 技 プロ ピ ザ ミ ド (mg/l) フェノブカルブ (BPMC\mg/l) フェノブカルブ (BPMC\mg/l) フェノブカルブ (BPMC\mg/l) フェノブカルブ (BPMC\mg/l) フロルニトロフェン (CNP\mg/l) ト ル エ ン (mg/l) キ ン レ ン (mg/l) モ リ ブ デ ン (mg/l) 塩 ピニルモノマー(mg/l) 塩 ピニルモノマー(mg/l) 塩 ピニルモノマー(mg/l) P F O S ※ 2(ng/l) D F O S ※ 2(ng/l) W M M M M M M M M M M M M M M M M M M														
T														
提														
日	視													
マプロペンホス (IBP)(mg/l) マプロペンホス (IBP)(mg/l) トル エ ン (mg/l) キ シ レ ン (mg/l) モ リ ブ デ ン (mg/l) モ リ ブ デ ン (mg/l) エ ピ ク ロ ロ ヒ ド リン (mg/l) エ ピ ク ロ ロ ヒ ド リン (mg/l) ウ ラ ン (mg/l) P F O S ※ 2(mg/l) P F O A ※ 3(mg/l) P F O S ※ 2(mg/l) D F O S														
クロルニトロフェン (CNP/mg/l) ト ル エ ン (mg/l) キ シ レ ン (mg/l) フタル酸ジェチルヘキシル(mg/l) モ リ ブ デ ン (mg/l) 世 化 ピニ ル モ ノ マ - (mg/l) 塩 化 ピニ ル モ ノ マ - (mg/l) ウ ラ ン (mg/l) P F O S ※ 2(ng/l) P F O A ※ 3(ng/l) P F O A ※ 3(ng/l) P F O S 及 び P F O A (ng/l)	-													
ト ル エ ン (mg/l) キ シ レ ン (mg/l) フタル酸ジェチルヘキシル(mg/l) ニ ッ ケ ル (mg/l) モ リ ブ デ ン (mg/l) 塩 化 ビニ ル モ ノ マ ー (mg/l) 全 マ ン ガ ン (mg/l) P F O S ※ 2(ng/l) P F O A ※ 3(ng/l) P F O A ※ 3(ng/l) P F O S 及 び P F O A (ng/l) ボ 世 窒 素 (mg/l) 型 項 酸 性 窒 素 (mg/l) リ ン 酸 性 リ ン (mg/l) リ ン 酸 性 リ ン (mg/l) ジ オ ス ミ ン (μ mg/l) 塩 化 物 イ オ ン (mg/l) 2 1 9 46 -/4														
キ シ レ ン (mg/l) フタル酸ジェチルヘキシル(mg/l) ニ ッ ケ ル (mg/l) モ リ ブ デ ン (mg/l) 塩 化 ビニル モ ノ マ ー (mg/l) エ ビ ク ロ ロ ヒ ド リン (mg/l) ウ ラ ン (mg/l) P F O S ※ 2(ng/l) P F O S ※ 2(ng/l) P F O S ※ 2(ng/l) P F O S ※ (mg/l) P F O S ※ (mg/l) O T D E E E E E E E E E E E E E E E E E E														
フタル酸ジェチルヘキシル(mg/l)														
ニ ッ ケ ル (mg/l)														
モ リ ブ デ ン (mg/l) ア ン チ モ ン (mg/l) 塩 化 ビニ ル モ ノ マ ー (mg/l) ユ ビ ク ロ ロ ヒ ド リ ン (mg/l) ウ ラ ン (mg/l) P F O S ※ 2(ng/l) P F O A ※ 3(ng/l) P F O S 及 び P F O A (ng/l) プ ン モ ニ ア 性 窒 素 (mg/l) 硝 酸 性 窒 素 (mg/l) リ ン 酸 性 リ ン (mg/l) リ ン 酸 性 リ ン (mg/l) リ ン 酸 性 リ ン (mg/l) ジ オ ス ミ ン (μ mg/l) 塩 化 物 イ オ ン (mg/l) 塩 化 物 イ オ ン (mg/l) 塩 化 物 イ オ ン (mg/l) 塩 分 濃 度 (%ω)														
ア ン チ モ ン (mg/l) 塩化ビニルモノマー (mg/l) ユビクロロヒドリン (mg/l) 全 マ ン ガ ン (mg/l) ウ ラ ン (mg/l) P F O S ※ 2(ng/l) P F O A ※ 3(ng/l) P F O A ※ 3(ng/l)														
塩化ビニルモノマー (mg/l) エピクロロヒドリン (mg/l) 全 マ ン ガ ン (mg/l) P F O S ※ 2(ng/l) P F O A ※ 3(ng/l) P F O S 及びP F O A (ng/l) W														
エピクロロヒドリン (mg/l) 全マンガン (mg/l) ウラン (mg/l) PFOS※ 2(ng/l) PFOS及びPFOA (ng/l) マンモニア性窒素 (mg/l) 前酸性窒素 (mg/l) 亜硝酸性窒素 (mg/l) 型硝酸性窒素 (mg/l) ボース・ローク (mg/l) ボース・														
全 マ ン ガ ン (mg/l) ウ ラ ン (mg/l) P F O S ※ 2(ng/l) P F O A ※ 3(ng/l) P F O A (ng/l)														
ウラン (mg/l) PFOS ※ 2(ng/l) (0.1 -/1 PFOS 及びPFOA (ng/l) (0.2 -/1 PFOS 及びPFOA (ng/l) (0.3 -/1 可能 酸性 窒素 (mg/l) (0.15 0.07 0.22 -/4 工 研 酸性 窒素 (mg/l) (0.01 -/4 リン酸性 リン (mg/l) (0.01 -/6 国 度 (度) (0.01 -/6 トリハロメタン生成能 (mg/l) (0.01 -/6 ジ オ ス ミン (μ mg/l) (0.01 -/4 塩 化 物 イ オ ン (mg/l) (0.01 -/4 塩 化 物 イ オ ン (mg/l) (0.01 -/4 塩 化 物 イ オ ン (mg/l) (0.01 -/4 塩 の (
P F O S ※ 2(ng/l) P F O A ※ 3(ng/l) P F O S 及 び P F O A (ng/l) 7 ン モニア 性 窒素 (mg/l) 前 酸 性 窒素 (mg/l) 亜 硝 酸 性 窒素 (mg/l) 数 皮 (度) トリハロメタン生成能(mg/l) ジ オ ス ミン (μ mg/l) 塩 化 物 イ オン (mg/l) 塩 分 濃 度 (%ω)														
P F O A ※ 3(ng/l) (02 -/1 P F O S 及 び P F O A (ng/l) (03 -/1 プンモニア性窒素 (mg/l) 0.15 0.07 0.22 -/4 亜 硝 酸 性 窒素 (mg/l) (001 -/4 リン 酸 性 リン (mg/l) (001 -/6 濁 度 (度) (001 -/6 トリハロメタン生成能 (mg/l) (001 -/6 ジオスミン (μ mg/l) (001 -/4 塩 化 物 イ オン (mg/l) (001 -/6 塩 化 物 イ オン (mg/l) (001 -/6 塩 分 濃 度 (%ω) (001 -/6									<0.1	-/1				
アンモニア性窒素 (mg/l) 0.15 0.07 0.22 -/4 硝酸性窒素 (mg/l) 0.15 0.07 0.22 -/4 亜硝酸性窒素 (mg/l) (0.01 -/4 リン酸性リン (mg/l) (0.01 -/6 濁度 (度) (0.01 -/6 湯度 (度) (0.01 -/6 湯度 (度) (0.01 -/6 場度 (凍g/l) (0.01 -/6 塩化物 1 B (μg/l) (0.01 -/6 塩化物 1 オン (mg/l) (0.01 -/6 塩										 				
研 酸 性 窒 素 (mg/l) 亜 硝 酸 性 窒 素 (mg/l) フ 酸 性 リ ン (mg/l) ス の の で で で で で で で で で で で で で で で で で														
亜 硝 酸 性 窒 素 (mg/l)		ア ン モ ニ ア 性 窒 素 (mg/l)									İ			
その他の項目 日		硝 酸 性 窒 素 (mg/l)					0.15	0.07	0.22	-/4				
The following of t		亜 硝 酸 性 窒 素 (mg/l)							<0.01	-/4				
の	,	リ ン 酸 性 リ ン (mg/l)							<0.01	-/6				
の項目 2 - M I B (μ g/l) ジオスミン (μ mg/l) 塩化物イオン (mg/l) 塩分濃度(%ω)	0	濁 度 (度)												
項目 2 - M I B (μ g/l)														
ジ オ ス ミ ン (μ mg/l) 塩 化 物 イ オ ン (mg/l) 塩 分 濃 度 (‰)	項	2 - M I B (μ g/l)												
塩 分 濃 度 (%)		ジ オ ス ミ ン (μ mg/l)												
		塩 化 物 イ オ ン (mg/l)					21	9	46	-/4				
● 年 上 道 東 / (C / m) 1990 70 5000 / 0 9700 110 91000 / 0		塩 分 濃 度 (‰)												
电 XL TA 等 年(μ 5/cm/ 1200 79 5900 7/6 8/00 410 21000 7/6		電 気 伝 導 率 (μ S/cm)					1200	79	5900	-/6	8700	410	21000	-/6

(備考) ※1 x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 ※2ペルフルオロオクタンスルホン酸(PFOS) ※3ペルフルオロオクタン酸(PFOA)

2-19 古座川水域水質測定結果


①のとおり2測定点で、それぞれ年6回の測定を実施した。その結果は、③のとおりである。 この河川は、環境基準類型(河川の部)AAをあてはめている。

BODの75%値でみると、古座川の環境基準点である高瀬橋では、0.5 mg/1 で、下流域の古座橋では 0.5 mg/1 と、ともに環境基準値(AA:1 mg/1)に適合している。

また、平成 26 年 10 月 10 日付け和歌山県告示第 2598 号で、水生生物保全に係る類型として、古座川(高瀬橋から上流の水域)を生物 A類型に、古座川(古座大橋から高瀬橋までの水域)を生物 B類型に指定した。

水生生物保全に係る環境基準項目である全亜鉛【基準値(生物 A, B: 0.03 mg/L)】、ノニルフェノール【基準値(生物 A: 0.001 mg/L、生物 B: 0.002 mg/L)】、LAS【基準値(生物 A: 0.03 mg/L、生物 B: 0.05 mg/L)】の平均値でみると、全ての環境基準点で環境基準値に適合している。

① 古座川水域測定点図

② 古座川のBOD75%値の推移

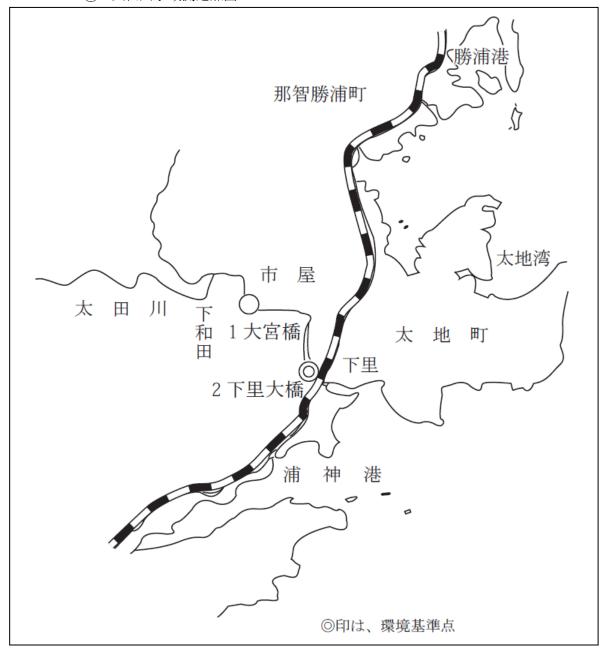
③ 古座川水域水質測定結果一覧

	水 域 名				古座	ĭE JII			
	地 点 名	高流	頼橋(AA【基	】,生物A【基	基】)	古月	垄橋(AA【基	】,生物B【基	<u>\$</u>])
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		7.0	7.2	0/6		7.0	8.3	0/6
	D O (mg/l)	9.5	8.3	10	0/6	9.5	7.9	10	0/6
		(0.5)				(0.5)			
	B O D (mg/l)	0.5	<0.5	0.7	0/6	0.5	<0.5	0.7	0/6
生	C O D (mg/l)	1.2	0.8	1.5	-/6	1.3	1.1	1.5	-/6
活	S S (mg/l)	1	<1	1	0/6	1	<1	1	0/6
環境	大 腸 菌 数 (CFU/100ml)	20	10	31	0/6	23	4	66	0/6
項目	N - へ キ サ ン 抽 出 物 質 (mg/l)								
	全 窒 素 (mg/l)	0.18	0.12	0.27	-/6	0.18	0.14	0.23	-/6
	全 燐 (mg/l)	0.019	0.008	0.039	-/6	0.020	0.011	0.039	-/6
	全 亜 鉛 (mg/l)	0.007	0.001	0.029	0/6	0.008	<0.001	0.027	0/6
	ノニ ル フェ ノー ル (mg/l)			<0.00006	0/1			<0.00006	0/1
	L A S (mg/l)			<0.0006	0/1			<0.0006	0/1
	カト * ミウム (mg/l)			<0.0003	0/4	0.0003	<0.0003	0.0003	0/4
	全 シ ア ン (mg/l)			<0.1	0/4			<0.1	0/4
	鉛 (mg/l)			<0.005	0/4			<0.005	0/4
	六価クロム (mg/l)			<0.02	0/4			<0.02	0/4
	砒 素 (mg/l)			<0.001	0/4			<0.001	0/4
	総 水 銀 (mg/l)			<0.0005	0/4			<0.0005	0/4
	ア ル キ ル 水 銀 (mg/l)								
健	P C B (mg/l)			<0.0005	0/4			<0.0005	0/4
	シ * ク ロ ロ メ タ ン (mg/l)			<0.002	0/4			<0.002	0/4
	四塩化炭素(mg/l)			<0.0002	0/4			<0.0002	0/4
	1,2- シ * クロロエタン (mg/l)			<0.0004	0/4			<0.0004	0/4
康	1,1- シ゛クロロエチレン (mg/l)			<0.002	0/4			<0.002	0/4
	シス -1,2- シ゛クロロエチレン (mg/l)			<0.004	0/4			<0.004	0/4
	1,1,1- トリクロロエタン (mg/l)			<0.01	0/4			<0.01	0/4
項	1,1,2- トリクロロエタン (mg/l)			<0.0006	0/4			<0.0006	0/4
73	トリクロロエチレン (mg/l)			<0.001	0/4			<0.001	0/4
	テトラクロロエチレン (mg/l)			<0.001	0/4			<0.001	0/4
	1,3- シ゛り ロ ロ フ ゜ロ へ ゜ン (mg/l)			<0.0002	0/4			<0.0002	0/4
目	チ ウ ラ ム (mg/l) シ マ シ ゛ン (mg/l)			<0.0006	0/4			<0.0006	0/4
	, (iiig/i)			<0.0003 <0.002	0/4			<0.0003 <0.002	0/4
	チオヘンカルフ (mg/l) へ * ン セ * ン (mg/l)			<0.002	0/4			<0.002	0/4
	, , , , , , , , , , , , , , , , , , ,			<0.001	0/4			<0.001	0/4
	セ レ ン (mg/l) 硝酸性窒素及び亜硝酸性窒素(mg/l)	0.11	0.08	0.001	0/4	0.13	0.10	0.001	0/4
	前 版 注 至 来 及 び 里 前 	0.11	0.00	<0.1	0/4	0.13	<0.10	0.10	0/4
	ふ う _系 (mg/l) ほ う 素 (mg/l)			<0.1	0/4	0.1	<0.1	0.2	0/4
	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/4	0.10	\0.1	<0.005	0/4
	1,4 ⁻			\0.000	J/ 1			\0.000	J/ 1
特									
殊	マンカ [*] ン(溶解性)(mg/l)								
項日	7 П Д (mg/l)								
目	フェノール類 (mg/l)								
	/v xx (IIIg/1/								

	水 域 名				古原	·····································			
	地 点 名	高	瀬橋(AA【基	፟】, 生物A【₺	基】)	古	座橋(AA【基	】,生物B【基	<u>ŧ</u>])
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	E P N (mg/l)								
	フェノ — ル (mg/l)			<0.001	-/1			<0.001	-/1
	クロロホルム (mg/l)			<0.001	-/1			<0.001	-/1
	ホルムアルデヒド (mg/l)			<0.008	-/1			<0.008	-/1
	4-t- オクチルフェノール (mg/l)								
	ア ニ リ ン (mg/l)								
	2,4- ジクロロフェノー ル (mg/l)								
	トランス-1,2-ジクロロエチレン(mg/l)								
	1,2 — ジ ク ロ ロ プ ロ パ ン (mg/l)								
	p ー ジ ク ロ ロ ベ ン ゼ ン (mg/l)								
	イ ソ キ サ チ オ ン (mg/l)								
	ダ イ ア ジ ノ ン (mg/l)								
	フェニトロチオン(MEP)(mg/l)								
	イ ソ プ ロ チ オ ラ ン (mg/l)								
	オキシン銅(有機銅)(mg/l)								
要	クロロタロニル(TPN)(mg/l)								
監視	プ ロ ピ ザ ミ ド (mg/l)								
項	ジ ク ロ ル ボ ス (DDVP)(mg/l)								
目	フェノブカルブ (BPMC)(mg/l)								
	イ プ ロ ベ ン ホ ス (IBP)(mg/l)								
	クロルニトロフェン(CNP)(mg/l)								
	ト ル エ ン (mg/l)								
	キ シ レ ン (mg/l)								
	フタル酸ジエチルヘキシル(mg/l)								
	ニ ッ ケ ル (mg/l)								
	モ リ ブ デ ン (mg/l)								
	ア ン チ モ ン (mg/l)								
	塩 化 ビ ニ ル モ ノ マ ー (mg/l)								
	エピクロロヒドリン (mg/l)								
	全 マ ン ガ ン (mg/l)								
	ウ ラ ン (mg/l)								
	P F O S ※ 2(ng/l)			<0.1	-/1	ļ		<0.1	-/1
	P F O A ※ 3(ng/l)			<0.2	-/1			<0.2	-/1
	PFOS及びPFOA(ng/l)			<0.3	-/1			<0.3	-/1
	ア ン モ ニ ア 性 窒 素 (mg/l)								
	硝 酸 性 窒 素 (mg/l)	0.10	0.07	0.14	-/4	0.12	0.09	0.15	-/4
	亜 硝 酸 性 窒 素 (mg/l)			<0.01	-/4			<0.01	-/4
そ	リン酸性リン (mg/l)	0.01	<0.01	0.01	-/6	0.01	<0.01	0.01	-/6
の他	濁 度 (度)								
の	トリハロメタン 生成 能 (mg/l)								
項 目	2 — M I B (μ g/l)								
	ジ オ ス ミ ン (μ mg/l)								
	塩 化 物 イ オ ン (mg/l)	3	3	3	-/4	490	27	1700	-/4
	塩 分 濃 度 (‰)					ļ			
	電 気 伝 導 率 (μ S/cm)	45	39	55	-/6	7700	130	31000	-/6

(備考) ※1 x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 ※2 ペルフルオロオクタンスルホン酸(PFOS) ※3 ペルフルオロオクタン酸(PFOA)

2-20 太田川水域水質測定結果


①のとおり2測定点で、それぞれ年6回の測定を実施した。その結果は、②のとおりである。 この河川は、環境基準類型(河川の部)Aをあてはめている。

BODの75%値でみると、太田川の環境基準点である下里大橋では、0.6 mg/1 で、環境基準値(A:2 mg/1)に適合している。

また、平成 26 年 10 月 10 日付け和歌山県告示第 2598 号で、水生生物保全に係る類型として、太田川(旭橋から上流の水域)を生物 B 類型に指定した。

水生生物保全に係る環境基準項目である全亜鉛【基準値(生物 B: 0.03 mg/L)】、ノニルフェノール【基準値(生物 B: 0.002 mg/L)】、LAS【基準値(生物 B: 0.05 mg/L)】の平均値でみると、全ての環境基準点で環境基準値に適合している。

① 太田川水域測定点図

② 太田川水域水質測定結果一覧

	水 域 名				太日	田 川			
	地 点 名	大	宮橋(A【補], 生物B【裤	計])	下	里大橋(A【基	隻】, 生物B【基	基】)
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		6.6	6.8	0/6		6.7	8.1	0/6
	D O (mg/l)	9.2	8.4	10	0/6	9.3	8.1	10	0/6
		(0.5)				(0.6)			
	B O D (mg/l)	0.5	<0.5	0.5	0/6	0.6	<0.5	0.6	0/6
生	C O D (mg/l)	0.9	<0.5	1.3	-/6	1.0	0.6	1.3	-/6
活	S S (mg/l)	1	<1	1	0/6	1	<1	1	0/6
環境	大 腸 菌 数 (CFU/100ml)	29	5	75	0/6	29	4	57	0/6
項	N - へ キ サ ン 抽 出 物 質 (mg/l)								
目	全 窒 素 (mg/l)	0.20	0.15	0.27	-/6	0.22	0.17	0.27	-/6
	全 燐 (mg/l)	0.019	0.010	0.041	-/6	0.019	0.010	0.038	-/6
	全 亜 鉛 (mg/l)	0.008	0.001	0.018	0/6	0.005	<0.001	0.011	0/6
	ノニルフェノール (mg/l)							<0.00006	0/1
	L A S (mg/l)							<0.0006	0/1
	カ ト ゜ ミ ウ ム (mg/l)					0.0003	<0.0003	0.0003	0/4
	全 シ 7 ン (mg/l)							<0.1	0/4
	鉛 (mg/l)							<0.005	0/4
	六 価 ク ロ ム (mg/l)							<0.02	0/4
	砒 素 (mg/l)							<0.001	0/4
	総 水 銀 (mg/l)							<0.0005	0/4
	ア ル キ ル 水 銀 (mg/l)								
健	P C B (mg/l)							<0.0005	0/4
	シ [*] ク ロ ロ メ タ ン (mg/l)							<0.002	0/4
	四塩化炭素(mg/l)							<0.0002	0/4
	1,2- シ [*] クロロエタン (mg/l)							<0.0004	0/4
康	1,1- シ							<0.002	0/4
	シス -1,2- シ゛クロロエチレン (mg/l)							<0.004	0/4
	1,1,1-トリクロロエタン (mg/l)							<0.01	0/4
	1,1,2- トリクロロエタン (mg/l)							<0.0006	0/4
項	トリクロロエチレン (mg/l)							<0.001	0/4
	テトラクロロエチレン (mg/l)							<0.001	0/4
	1,3- シ゛クロロフ゜ロヘ゜ン (mg/l)							<0.0002	0/4
目	チ ウ ラ ム (mg/l)							<0.0006	0/4
	シマシ ・ ン (mg/l)							<0.0003	0/4
	チオヘ゜ンカルフ゜(mg/l)							<0.002	0/4
	へ * ン セ * ン (mg/l)							<0.001	0/4
	セ レ ン (mg/l)					6.15	6.15	<0.001	0/4
	硝酸性窒素及び亜硝酸性窒素(mg/l) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・					0.15	0.12	0.20	0/4
	ふっ素 (mg/l)					0.15	/01	<0.1	0/4
	ほう 素 (mg/l) 1,4- シ オ キ サ ン (mg/l)					0.15	<0.1	0.3	0/4
\vdash								<0.005	0/4
特	銅 (mg/l) 鉄 (茨 解 性) (mg/l)							<0.04	-/6
殊	鉄 (溶 解 性) (mg/l)								
項	マンカ゛ン (溶解性) (mg/l)								
目	クロム (mg/l)								
	フェノール類(mg/l)								

	水 域 名				太日	且川			
	地 点 名	大	宮橋(A【補], 生物B【裤	前】)	下!	里大橋(A【基	基】,生物B【基	甚】)
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	E P N (mg/l)								
	フ ェ ノ ー ル (mg/l)							<0.001	-/1
	ク ロ ロ ホ ル ム (mg/l)							<0.001	-/1
	ホルムアルデヒド (mg/l)							<0.008	-/1
	4-t- オクチルフェノール(mg/l)								
	ア ニ リ ン (mg/l)								
	2,4- ジクロロフェノー ル (mg/l)								
	トランス-1,2-ジクロロエチレン(mg/l)								
	1,2 — ジ ク ロ ロ プ ロ パ ン (mg/l)								
	p ー ジ ク ロ ロ ベ ン ゼ ン (mg/l)								
	イ ソ キ サ チ オ ン (mg/l)								
	ダ イ ア ジ ノ ン (mg/l)								
	フェニトロチオン(MEP)(mg/l)								
	イソプロチオラン(mg/l)								
	オキシン銅(有機銅)(mg/l)								
要監	クロロタロニル (TPN) (mg/l)								
視	プロピザミド (mg/l)								
項目	ジ ク ロ ル ボ ス (DDVP)(mg/l) フェノブ カル ブ (BPMC)(mg/l)								
	フェノフガルフ (BPMC/(mg/l) イプロベンホス (IBP)(mg/l)								
	クロルニトロフェン (CNP)(mg/l)								
	ト ル エ ン (mg/l)								
	キ シ レ ン (mg/l)								
	フタル酸ジエチルヘキシル(mg/l)								
	ニ ッ ケ ル (mg/l)								
	モ リ ブ デ ン (mg/l)								
	ア ン チ モ ン (mg/l)								
	塩 化 ビ ニ ル モ ノ マ ー (mg/l)								
	ェピクロロヒドリン (mg/l)								
	全 マ ン ガ ン (mg/l)								
	ウ ラ ン (mg/l)								
	P F O S ※ 2(ng/l)							<0.1	-/1
	P F O A ※ 3(ng/l)							<0.2	-/1
	PFOS及びPFOA(ng/l)							<0.3	-/1
	ア ン モ ニ ア 性 窒 素 (mg/l)							_	
	硝 酸 性 窒 素 (mg/l)					0.14	0.11	0.19	-/4
	亜 硝 酸 性 窒 素 (mg/l)							<0.01	-/4
そ	リ ン 酸 性 リ ン (mg/l)					0.01	<0.01	0.01	-/6
の他	濁 度 (度)								
の	トリハロメタン 生成 能 (mg/l)								
項目	2 — M I B (μ g/l)								
	ジ オ ス ミ ン (μ mg/l)								
	塩化物イオン(mg/l)					380	37	1300	-/4
	塩 分 濃 度 (‰)	40				7500	4	00000	
	電 気 伝 導 率 (μ S/cm)	48	43	56	-/6	7500	170	26000	-/6

※3 ペルフルオロオクタン酸(PFOA)

2-21 那智川・二河川水域水質測定結果

<那智川>

①のとおり、2 測定点でそれぞれ年6回の測定を実施した。その結果は、②のとおりである。

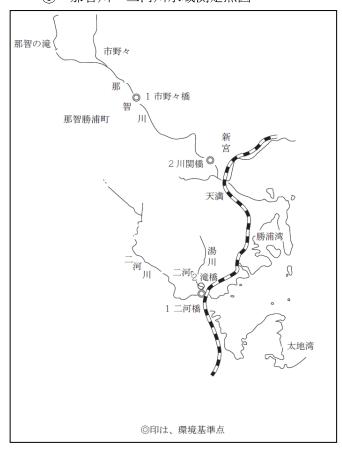
この河川の環境基準類型(河川の部)は、那智川の市野々橋から上流の水域にはAA、下流の水域にはAをそれぞれあてはめている。

BODの 75%値でみると那智川上流域の環境基準点である市野々橋では、0.5 mg/1 で、環境基準値 (AA:1 mg/1) に適合している。下流域の環境基準点である川関橋でも、0.5 mg/1 で、環境基準値 (A:2 mg/1) に適合している。

また、平成 26 年 10 月 10 日付け和歌山県告示第 2598 号で、水生生物保全に係る類型として、那智川(JR 紀勢本線那智川橋梁から上流の水域)を生物 B 類型に指定した。

水生生物保全に係る環境基準項目である全亜鉛【基準値(生物 B: 0.03 mg/L)】、ノニルフェノール【基準値(生物 B: 0.002 mg/L)】、LAS【基準値(生物 B: 0.05 mg/L)】の平均値でみると、全ての環境基準点で環境基準値に適合している。

<二河川>


①のとおり、2 測定地点で年6回の測定を実施した。その結果は、②のとおりである。 この河川の環境基準類型(河川の部)は、Aをあてはめている。

BODの75%値でみると、二河川の環境基準点である二河橋では、0.6 mg/1 で、環境基準値 (A:2 mg/1) に適合している。

また、平成 26 年 10 月 10 日付け和歌山県告示第 2598 号で、水生生物保全に係る類型として、 二河川(JR 紀勢本線二河川橋梁から上流の水域)を生物 B 類型に指定した。

水生生物保全に係る環境基準項目である全亜鉛【基準値(生物 B: 0.03 mg/L)】、ノニルフェノール【基準値(生物 B: 0.002 mg/L)】、LAS【基準値(生物 B: 0.05 mg/L)】の平均値でみると、全ての環境基準点で環境基準値に適合している。

① 那智川·二河川水域測定点図

② 那智川・二河川水域水質測定結果一覧

	水 域 名				那~	雪 川			
	地 点 名	市野	る る る る る る る る る る る る る る る る る る る	基】,生物B【	補】)	Л	関橋(A【基	】,生物B【基])
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		7.3	7.8	0/6		7.0	7.6	0/6
	D O (mg/l)	9.3	8.0	10	0/6	9.5	8.3	11	0/6
		(0.5)				(0.5)			
	B O D (mg/l)	0.5	<0.5	0.5	0/6	0.5	<0.5	0.5	0/6
生	C O D (mg/l)	0.9	0.5	1.5	-/6	0.9	0.6	1.4	-/6
活	S S (mg/l)	2	<1	4	0/6	1	<1	1	0/6
環境	大 腸 菌 数 (CFU/100ml)	29	7	47	0/6	27	13	71	0/6
項目	N - へ キ サ ン 抽 出 物 質 (mg/l)								
	全 窒 素 (mg/l)	0.17	0.14	0.22	-/6	0.19	0.15	0.22	-/6
	全 燐 (mg/l)	0.021	0.012	0.043	-/6	0.017	0.008	0.039	-/6
	全 亜 鉛 (mg/l)	0.004	0.001	0.013	0/6	800.0	<0.001	0.024	0/6
	ノ ニ ル フ ェ ノ ― ル (mg/l)							<0.00006	0/1
	L A S (mg/l)							<0.0006	0/1
	カト゛ミウム (mg/l)			<0.0003	0/4			<0.0003	0/4
	全 シ ア ン (mg/l)			<0.1	0/4			<0.1	0/4
	鉛 (mg/l)			<0.005	0/4			<0.005	0/4
	六 価 ク ロ ム (mg/l)			<0.02	0/4			<0.02	0/4
	砒 素 (mg/l)			<0.001	0/4			<0.001	0/4
	総 水 銀 (mg/l)			<0.0005	0/4			<0.0005	0/4
	アルキル水 銀 (mg/l)								
健	P C B (mg/l)			<0.0005	0/4			<0.0005	0/4
	シ * ク ロ ロ メ タ ン (mg/l)			<0.002	0/4			<0.002	0/4
	四塩化炭素(mg/l)			<0.0002	0/4			<0.0002	0/4
	1,2- シ			<0.0004	0/4			<0.0004	0/4
康	1,1- シ * クロロエチレン (mg/l)			<0.002	0/4			<0.002	0/4
	シス -1,2- シ゛クロロエチレン (mg/l)			<0.004	0/4			<0.004	0/4
	1,1,1-トリクロロエタン (mg/l)			<0.01	0/4			<0.01	0/4
頂	1,1,2-トリクロロエタン (mg/l)			<0.0006	0/4			<0.0006	0/4
項				<0.001	0/4			<0.001	0/4
	テトラクロロエチレン (mg/l)			<0.001	0/4			<0.001	0/4
	1,3- シ * クロロフ ° ロヘ ° ン (mg/l)			<0.0002	0/4			<0.0002	0/4
目	チ ウ ラ ム (mg/l) シ マ シ ・ ン (mg/l)			<0.0006 <0.0003	0/4			<0.0006	0/4
	シ マ シ ゛ ン (mg/l) チ オ へ ゛ ン カ ル フ ゛ (mg/l)			<0.0003	0/4			<0.0003 <0.002	0/4
	7 1 ペ フ			<0.002	0/4			<0.002	0/4
	セ レ ン (mg/l)			<0.001	0/4			<0.001	0/4
	研験 付 窒 素 及 び 亜 硝 酸 性 窒 素 (mg/l)	0.10	0.08	0.001	0/4	0.12	0.08	0.001	0/4
	新	0.10	0.00	<0.1	0/4	0.12	<0.1	0.10	0/4
	ほう素 (mg/l)			<0.1	0/4	0.1	\0.1	<0.1 <0.1	0/4
	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/4			<0.005	0/4
H	1,4 / カ キ y / (liig/l/ 銅 (mg/l)			<0.003	-/6			<0.04	-/6
特	鉄 (溶 解 性) (mg/l)				, •			.5.51	, •
殊	マンカ [*] ン(溶解性)(mg/l)								
項目	7 D A (mg/l)								
	フェノール類 (mg/l)								
Ш	· · · /v · · スス \IIIg/1/					<u> </u>			

水 域 名				那~	雪 川			
地 点 名	市野	々橋(AA【	基】,生物B【	補】)	JI	関橋(A【基	】,生物B【基])
測定值	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
E P N (mg/l)								
フ ェ ノ ー ル (mg/l)							<0.001	-/1
クロロホルム (mg/l)							<0.001	-/1
ホルムアルデヒド (mg/l)							<0.008	-/1
4-t- オクチルフェノール (mg/l)								
ア ニ リ ン (mg/l)								
2,4- ジクロロフェノー ル (mg/l)								
トランス-1,2-ジクロロエチレン(mg/l)								
1,2 — ジ クロロプロパン(mg/l)								
p ー ジ ク ロ ロ ベ ン ゼ ン (mg/l)								
イ ソ キ サ チ オ ン (mg/l)								
ダ イ ア ジ ノ ン (mg/l)								
フェニトロチオン(MEP)(mg/l)								
イソプロチオラン (mg/l)								
オキシン銅(有機銅)(mg/l)								
要 クロロタロニル(TPN)(mg/l)								
監 現 プロピザミド (mg/l)								
項 ジ ク ロ ル ボ ス (DDVP)(mg/l)								
目 フェノブカルブ(BPMC)(mg/l)								
イプロベンホス(IBP)(mg/l)								
クロルニトロフェン (CNP)(mg/l)								
トルエン (mg/l)								
キ シ レ ン (mg/l)								
フタル酸ジエチルヘキシル(mg/l)			<0.006	0/1				
二 ッ ケ ル (mg/l)								
モ リ ブ デ ン (mg/l)						8		
ア ン チ モ ン (mg/l)								
塩 化 ビニ ル モ ノマ ー (mg/l)			<0.0002	0/1				
エピクロロヒドリン (mg/l)			<0.00003	0/1				
全 マ ン ガ ン (mg/l)								
ウ ラ ン (mg/l)								
P F O S ※ 2(ng/l)			<0.1	-/1			<0.1	-/1
P F O A ※ 3(ng/l)			<0.2	-/1			<0.2	-/1
PFOS及びPFOA(ng/l)			<0.3	-/1			<0.3	-/1
ア ン モ ニ ア 性 窒 素 (mg/l)	0.00	0.07	6.10	/*	644		0.15	
硝酸性窒素 (mg/l)	0.09	0.07	0.12	-/4	0.11	0.07	0.15	-/4
亜 硝 酸 性 窒 素 (mg/l)	0.01	/0.01	<0.01	-/4			<0.01	-/4
サン酸性リン (mg/l)	0.01	<0.01	0.01	-/6			<0.01	-/6
の 								
の ドリハロメダン 生 成 能 (mg/l)								
目								
	2	2	2	_/4	4		5	_/4
塩 化 物 イ オ ン (mg/l) 塩 分 濃 度 (‰)	3	3	3	-/4	4	4	5	-/4
	47	44	52	-/6	230	63	1000	_/ 6
電 気 伝 導 率 (μ S/cm)	4/	44	IJΖ	-⁄ U	230	บง	1000	-/6

(備考) ※1x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 ※2 ペルフルオロオクタンスルホン酸(PFOS) ※3 ペルフルオロオクタン酸(PFOA)

	水 域 名		二河	可 川			二潭	ـــــــــــــــــــــــــــــــــــــ	
	地 点 名			<u>, /:</u>], 生物B【基	[])			_, _)	
-	測定値					TT 1-5			/
測	定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	х/у
	р Н		6.8	8.0	0/6		7.9	8.2	6/6
	D O (mg/l)	8.7	7.4	9	1/6	7.7	6.2	8.4	6/6
		(0.6)				(0.7)			
	B O D (mg/l)	0.6	<0.5	0.9	0/6	0.7	0.6	0.7	0/6
生	C O D (mg/l)	0.8	0.5	1.0	-/6	1.6	1.2	1.9	-/6
活理	S S (mg/l)	1	<1	1	0/6	2	<	3	0/6
環境	大 腸 菌 数 (CFU/100ml)	80	19	170	0/6	39	4	140	0/6
項目	N - へ キ サ ン 抽 出 物 質 (mg/l)								
"	全 窒 素 (mg/l)	0.23	0.18	0.29	-/6	0.22	0.12	0.30	-/6
	全 燐 (mg/l)	0.019	0.010	0.042	-/6	0.022	0.010	0.046	-/6
	全 亜 鉛 (mg/l)	0.011	<0.001	0.032	0/6	0.005	<0.001	0.009	-/6
	ノ ニ ル フ ェ ノ ー ル (mg/l)			<0.00006	0/1				
	L A S (mg/l)			<0.0006	0/1				
	カ ト ゜ ミ ウ ム (mg/l)			<0.0003	0/4			<0.0003	0/4
	全 シ ア ン (mg/l)			<0.1	0/4			<0.1	0/4
	鉛 (mg/l)			<0.005	0/4			<0.005	0/4
	六 価 ク ロ ム (mg/l)			<0.02	0/4			<0.02	0/4
	砒 素 (mg/l)			<0.001	0/4			<0.001	0/4
	総 水 銀 (mg/l)			<0.0005	0/4			<0.0005	0/4
	アルキル水銀 (mg/l)								
健	P C B (mg/l)			<0.0005	0/4			<0.0005	0/4
	シ [*] ク ロ ロ メ タ ン (mg/l)			<0.002	0/4			<0.002	0/4
	四塩化炭素(mg/l)			<0.0002	0/4			<0.0002	0/4
	1,2- シ ^ ク ロ ロ エ タ ン (mg/l)			<0.0004	0/4			<0.0004	0/4
康	1,1- シ゜クロロエチレン (mg/l)			<0.002	0/4			<0.002	0/4
	シス -1,2- シ [*] クロロエチレン (mg/l)			<0.004	0/4			<0.004	0/4
	1,1,1- トリクロロエタン (mg/l)			<0.01	0/4			<0.01	0/4
	1,1,2- トリクロロエタン (mg/l)			<0.0006	0/4			<0.0006	0/4
項	トリクロロエチレン (mg/l)			<0.001	0/4			<0.001	0/4
	テトラクロロエチレン (mg/l)			<0.001	0/4			<0.001	0/4
	1,3- シ゛クロロフ゜ロへ゜ン (mg/l)			<0.0002	0/4			<0.0002	0/4
	チ ウ ラ ム (mg/l)			<0.0006	0/4			<0.0006	0/4
目	シ マ シ ・ ン (mg/l)			<0.0003	0/4			<0.0003	0/4
	チオへ゛ンカルフ゛(mg/l)			<0.002	0/4			<0.002	0/4
	へ ・ ン セ ・ ン (mg/l)			<0.001	0/4			<0.001	0/4
	セ レ ン (mg/l)			<0.001	0/4			<0.001	0/4
	硝 酸 性 窒 素 及 び 亜 硝 酸 性 窒 素 (mg/l)	0.18	0.12	0.24	0/4	0.09	0.05	0.15	0/4
	ふ っ 素 (mg/l)	0.1	0.1	0.2	0/4	0.68	0.4	0.9	1/4
	ほ う 素 (mg/l)	0.6	0.1	1.5	1/4	2.9	1.3	3.7	4/4
	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/4			<0.005	0/4
	銅 (mg/l)			<0.04	-/6			<0.04	-/6
特础	鉄 (溶 解 性) (mg/l)								
殊項	マンカ゛ン(溶 解 性) (mg/l)								
目	7 П Д (mg/l)								
	フ ェ ノ ー ル 類 (mg/l)								

水 域 名		二 沪	可川			二河	可 川	
地 点 名	=	河橋(A【基	】, 生物B【基	<u>t]</u>)		滝橋(-, -)	
測定值	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
測定項目 E P N (mg/l)								
7 I / - 1\(\text{mg/l}\)			<0.001	-/1				
クロロホルム (mg/l)			<0.001	-/1				
ホルムアルデヒド (mg/l)			<0.008	-/1				
ポルゴ / ル / こ (mg/l) 4-t- オクチルフェノール (mg/l)			(0.000	<u>' '</u>				
ア = リ ン (mg/l)								
2,4- ジクロロフェノー ル (mg/l)								
トランス-1,2-ジクロロエチレン(mg/l)								
1,2 — ジクロロプロパン(mg/l)								
p — ジ ク ロ ロ ベ ン ゼ ン (mg/l)								
イソキサチオン (mg/l)								
ダ イ ア ジ ノ ン (mg/l)								
フェニトロチオン (MEP) (mg/l)								
イソプロチオラン (mg/l)								
オキシン銅(有機銅)(mg/l)								
4 D D 4 D = II (TDN) ((1)								
要 プロロタロール (IPN / (mg/l) 監 プ ロ ピ ザ ミ ド (mg/l)								
視 項 ジ ク ロ ル ボ ス (DDVP)(mg/l)								
目 フェノブカルブ (BPMC)(mg/l)								
イプロベンホス (IBP)(mg/l)								
クロルニトロフェン (CNP)(mg/l)								
ト ル エ ン (mg/l)								
キ シ レ ン (mg/l)								
フタル酸ジエチルヘキシル(mg/l)								
ニッケル (mg/l)								
モ リ ブ デ ン (mg/l)								
ア ン チ モ ン (mg/l)								
塩 化 ビニ ル モ ノ マ ー (mg/l)								
エピクロロヒドリン (mg/l)								
全 マ ン ガ ン (mg/l)								
ウ ラ ン (mg/l)								
P F O S ※ 2(ng/l)			<0.1	-/1				
P F O A * 3(ng/l)			<0.2	-/1				
PFOS及びPFOA(ng/l)			<0.3	-/1				
ア ン モ ニ ア 性 窒 素 (mg/l)								
硝 酸 性 窒 素 (mg/l)	0.17	0.11	0.23	-/4	0.08	0.04	0.14	-/4
亜 硝 酸 性 窒 素 (mg/l)			<0.01	-/4			<0.01	-/4
リン酸性リン(mg/l)			<0.01	-/6				
そ								
他 トリハロメタン 生成 能 (mg/l)								
項 2 - M I B (μ g/l)								
目 ジ オ ス ミ ン (μ mg/l)								
塩 化 物 イ オ ン (mg/l)	2700	470	6400	-/4	11000	5900	17000	-/4
塩 分 濃 度 (‰)								
電 気 伝 導 率 (μ S/cm)	13000	1600	33000	-/6	36000	17000	49000	-/6
				•		•		

(備考) ※1 x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 ※2 ペルフルオロオクタンスルホン酸(PFOS) ※3 ペルフルオロオクタン酸(PFOA)

2-22 熊野川水域水質測定結果

①のとおり5測定点で、熊野川河口は年4回、宮井橋、三和大橋で年6回、熊野大橋、貯木橋で年12回の測定を実施した。また、貯木橋で年2回の通日調査を行った。その結果は、③のとおりである。この河川の環境基準類型(河川の部)は、熊野川にはA、熊野川支流の市田川にはDをそれぞれあてはめている。

BODの75%値でみると、熊野川の環境基準点である宮井橋では、0.6~mg/1、熊野大橋では<0.5~mg/1 で環境基準値(A:2~mg/1)に適合している。

また、市田川の環境基準点である貯木橋は1.8 mg/l (通日調査を含む) で環境基準値 (D:8 mg/l) に適合している。

熊野川については、平成26年10月10日付け和歌山県告示第2598号で、水生生物保全に係る類型として、熊野川(高田川合流点から上流の水域のうち、和歌山県の区域に属する水域)を生物A類型に、熊野川(河口から高田川合流点までの水域のうち、和歌山県の区域に属する水域)を生物B類型に指定した。

水生生物保全に係る環境基準項目である全亜鉛【基準値(生物 A, B: 0.03 mg/L)】、ノニルフェノール【基準値(生物 A: 0.001 mg/L、生物 B: 0.002 mg/L)】、LAS【基準値(生物 A: 0.03 mg/L、生物 B: 0.05 mg/L)】の平均値でみると、全ての環境基準点で環境基準値に適合している。

① 熊野川水域測定点図

② 熊野川のBOD75%値の推移

③ 熊野川水域水質測定結果一覧

	水 域 名						熊 里	F JII					
	地 点 名	包	'井橋(A【基]	】,生物A【基])	三	和大橋(A【衤	‡】, 生物A【ネ	哺】)	熊里	野大橋(A【基	§】, 生物B【	基】)
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		7.0	7.4	0/6		6.9	7.3	0/6		7.2	7.7	0/12
	D O (mg/l)	9	8.2	11	0/6	9.5	8.3	11	0/6	9.6	8.1	12	0/12
		(0.6)				(0.6)				(<0.5)			
	B O D (mg/l)	0.5	<0.5	0.6	0/6	0.6	<0.5	0.7	0/6	0.5	<0.5	0.6	0/12
生	C O D (mg/l)	1.0	0.4	1.4	-/6	1.2	1.0	1.4	-/6	0.8	0.5	1.1	-/12
活	S S (mg/l)	4	<1	9	0/6	1	<1	2	0/6	2	<1	6	0/12
環境	大 腸 菌 数 (CFU/100ml)	21	9	36	0/6	14	4	26	0/6	12	0	30	0/12
項目	N - へ キ サ ン 抽 出 物 質 (mg/l)											<0.5	-/1
"	全 窒 素 (mg/l)	0.21	0.15	0.27	-/6	0.17	0.14	0.24	-/6				
	全 燐 (mg/l)	0.019	0.007	0.045	-/6	0.016	0.005	0.037	-/6				
	全 亜 鉛 (mg/l)	0.008	<0.001	0.015	0/6	0.006	0.001	0.015	0/6	0.001	<0.001	0.002	0/3
	ノニ ル フェ ノー ル (mg/l)			<0.00006	0/1							<0.00006	0/4
	L A S (mg/l)			<0.0006	0/1							<0.0006	0/4
	カ ト ゜ ミ ウ ム (mg/l)			<0.0003	0/4							<0.0003	0/4
	全 シ ア ン (mg/l)			<0.1	0/4							<0.1	0/4
	鉛 (mg/l)			<0.005	0/4							<0.005	0/4
	六価クロム (mg/l)			<0.02	0/4							<0.01	0/4
	础 素 (mg/l)			<0.001	0/4							<0.001	0/4
	総 水 銀 (mg/l)			<0.0005	0/4							<0.0005	0/4
	アルキル水 銀 (mg/l)										ļ		
健	P C B (mg/l)			<0.0005	0/4							<0.0005	0/1
	シ * ク ロ ロ メ タ ン (mg/l)			<0.002	0/4						ļ	<0.002	0/4
	四塩化炭素(mg/l)			<0.0002	0/4						<u> </u>	<0.0002	0/4
	1,2- シ * ク ロ ロ エ タ ン (mg/l)			<0.0004	0/4						-	<0.0004	0/4
康	1,1- シ			<0.002	0/4							<0.002	0/4
	シス -1,2- シ゛クロロエチレン (mg/l)			<0.004	0/4						-	<0.004	0/4
	1,1,1- ト リ ク ロ ロ エ タ ン (mg/l)			<0.01 <0.0006	0/4							<0.01 <0.0006	0/4
項	1,1,2- トリクロロエタン (mg/l) トリクロロエチレン (mg/l)			<0.000	0/4							<0.0001	0/4
	テトラクロロエチレン (mg/l)			<0.001	0/4							<0.001	0/4
	1,3- シ * クロロフ ° ロヘ ° ン (mg/l)			<0.001	0/4							<0.0002	0/4
	1,3- / リロロ ロ ハ ノ (mg/l) チ ウ ラ ム (mg/l)			<0.0002	0/4							<0.0002	0/4
目				<0.0003	0/4							<0.0003	0/3
	チオヘ゜ンカルフ゜(mg/l)			<0.002	0/4							<0.002	0/3
	へ ・ ン セ ・ ン (mg/l)			<0.001	0/4							<0.001	0/4
	セ レ ン (mg/l)			<0.001	0/4							<0.001	0/4
	硝酸性窒素及び亜硝酸性窒素 (mg/l)	0.15	0.12	0.20	0/4					0.11	0.08	0.17	0/4
	ふ っ 素 (mg/l)			<0.1	0/4								
	ほ う 素 (mg/l)			<0.1	0/4								
	1,4- シ オ キ サ ン (mg/l)			<0.005	0/4							<0.005	0/4
	銅 (mg/l)			<0.04	-/6			<0.04	-/6			<0.04	-/1
特	鉄 (溶 解 性) (mg/l)											<0.05	-/1
殊	マンカ [°] ン(溶解性) (mg/l)											<0.01	-/1
項目	7 П Д (mg/l)											<0.03	-/1
-	フェノール類 (mg/l)											<0.005	-/1
	/ / At (IIIg/1/						1			1	1	\0.000	7.1

	水 域 名						熊 里	野 川					
	地 点 名	宮	群橋(A【基)	】,生物A【基])	三	和大橋(A【褚	甫】,生物A【ネ	哺】)	熊里	野大橋(A【基	基】, 生物B【基	基】)
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	х/у
	E P N (mg/l)											<0.0006	-/1
	7 I / - 1 (mg/l)			<0.001	-/1							<0.001	-/1
	クロロホルム (mg/l)			<0.001	-/1							<0.001	-/2
	ホルムアルデヒド (mg/l)			<0.008	-/1							<0.008	-/1
	4-t- オクチルフェノー ル (mg/l)											<0.00003	-/1
	ア ニ リ ン (mg/l)											<0.002	-/1
	2,4- ジクロロフェノー ル (mg/l)											<0.0003	-/1
	トランス-1,2-ジクロロエチレン(mg/l)											<0.004	-/1
	1,2 — ジ クロロプロパン(mg/l)											<0.006	-/1
	p ー ジ ク ロ ロ ベ ン ゼ ン (mg/l)											<0.02	-/1
	イ ソ キ サ チ オ ン (mg/l)											<0.0008	-/1
	ダ イ ア ジ ノ ン (mg/l)											<0.0005	-/1
	フェニトロチオン(MEP)(mg/l)											<0.0003	-/1
	イソプロチオラン(mg/l)											<0.004	-/1
	オ キ シ ン 銅 (有 機 銅)(mg/l)											<0.004	-/1
要	クロロタロニル(TPN)(mg/l)											<0.005	-/1
監	プ ロ ピ ザ ミ ド (mg/l)											<0.0008	-/1
視項	ジ ク ロ ル ボ ス (DDVP)(mg/l)											<0.0008	-/1
目	フェノブカルブ (BPMC)(mg/l)											<0.003	-/1
	イプロベンホス(IBP)(mg/l)											<0.0008	-/1
	クロルニトロフェン (CNP)(mg/l)											<0.0001	-/1
	ト ル エ ン (mg/l)											<0.06	-/1
	キ シ レ ン (mg/l)											<0.04	-/1
	フタル酸ジエチルヘキシル(mg/l)											<0.006	-/2
	ニ ッ ケ ル (mg/l)											<0.001	-/2
	モ リ ブ デ ン (mg/l)											<0.007	-/1
	ア ン チ モ ン (mg/l)											<0.002	-/2
	塩 化 ビ ニ ル モ ノマ ー (mg/l)											<0.0002	-/1
	エピクロロヒドリン (mg/l)											<0.00003	-/1
	全 マ ン ガ ン (mg/l)											<0.02	-/2
	ウ ラ ン (mg/l)									0.0003	<0.0002	0.0004	-/2
	P F O S ※ 2(ng/l)			<0.1	-/1								
	P F O A 🔆 3(ng/l)			<0.2	-/1								
L	PFOS及びPFOA(ng/l)		_	<0.3	-/1							<0.3	-/1
	ア ン モ ニ ア 性 窒 素 (mg/l)												
	硝 酸 性 窒 素 (mg/l)	0.14	0.11	0.19	-/4					0.11	0.08	0.17	-/4
	亜 硝 酸 性 窒 素 (mg/l)			<0.01	-/4							<0.01	-/4
2	リ ン 酸 性 リ ン (mg/l)			<0.01	-/6								
その	濁 度 (度)	6	<1	13	-/6	3	<1	6	-/6	4	1	15	-/12
他の	トリハロメタン 生成 能 (mg/l)												
項	2 — Μ Ι Β (μ g/l)												
目	ジ オ ス ミ ン (μ mg/l)												
	塩 化 物 イ オ ン (mg/l)	2	1	2	-/4					690	15	4180	-/12
	塩 分 濃 度 (‰)												
	電 気 伝 導 率 (μ S/cm)	64	55	83	-/6	50	44	54	-/6	2000	88	10600	-/12
_		-									1	1	

(備考) ※1 x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 ※2 ペルフルオロオクタンスルホン酸(PFOS) ※3 ペルフルオロオクタン酸(PFOA)

				野 川			市	田 川	
	地 点 名	熊野		· 補】,生物B【	【補】)			(基], 一)	
280		平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
測	定 項 目		7.3	7.8	0/4		6.9	7.5	0/12
	D O (mg/l)	9.3	7.9	11	0/12	7.1	4.0	11.0	0/12
	D C (Ilig/1/	(<0.5)	7.5		0/12	(1.8)	4.0	11.0	0/ 12
	B O D (mg/l)	0.5	<0.5	0.6	0/4	1.4	0.7	2.5	0/12
	C O D (mg/l)	0.8	0.6	1.1	-/4	3.1	1.5	5.1	-/12
生活		2	<1	3	0/4	4	2	8	0/12
環	S S (mg/l) 大 腸 菌 数 (CFU/100ml)	16	2	23	0/4	4		0	0/12
境項	N - ヘキサン抽 出 物 質 (mg/l)	10		20	0/4				
I	全 窒 素 (mg/l)								
	主 室 衆 (IIIg/I) 全 燐 (mg/l)								
	全 亜 鉛 (mg/l)			<0.001	0/1	0.011	0.006	0.015	-/2
	ユ エ 畑 畑 (iiig/i) ノニルフェノール (mg/l)			<0.0001	0/1	0.011	0.000	<0.0006	-/2
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			<0.0006	0/1			0.022	-/2 -/2
\vdash	カト ・ ミ ウ ム (mg/l)			\0.0000	U/ I		1	<0.0023	0/2
	プ F ミ ゲ A (mg/l) 全 シ ア ン (mg/l)							<0.0003	0/2
	全 / / / (liig/l) 鉛 (mg/l)			<0.005	0/2			<0.005	0/2
	#ロ (IIIg/1/ 六 価 ク ロ ム (mg/l)			₹0.003	0/2			<0.003	0/4
						0.001	<0.001	0.001	0/2
	一					0.001	₹0.001	<0.001	0/4
	アルキル水銀 (mg/l)							₹0.0003	0/ 2
	P C B (mg/l)							<0.0005	0/1
健	シ ・ ク ロ ロ メ タ ン (mg/l)							<0.000	0/1
	四 塩 化 炭 素 (mg/l)							<0.0002	0/2
	1,2- シ゛クロロエタン (mg/l)							<0.0004	0/2
康	1,1- シ							<0.002	0/2
床	シス -1,2- シ クロロエチレン (mg/l)							<0.004	0/2
	1,1,1- トリクロロエタン (mg/l)							<0.01	0/2
	1,1,2- トリクロロエタン (mg/l)							<0.006	0/2
項	トリクロロエチレン (mg/l)							<0.001	0/2
	テトラクロロエチレン (mg/l)							<0.001	0/2
	1,3- シ クロロフ ゚ロヘ ゚ン (mg/l)							<0.0002	0/2
	f j j l </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><0.0002</td> <td>0/2</td>							<0.0002	0/2
目	・							<0.0003	0/1
	チオヘ゛ンカルフ゛(mg/l)							<0.002	0/1
	へ * ン セ * ン (mg/l)							<0.001	0/2
	セ レ ン (mg/l)							<0.001	0/4
	研酸性窒素及び亜硝酸性窒素 (mg/l)	0.10	0.09	0.1	0/2	0.46	0.22	0.7	0/4
	ふ っ 素 (mg/l)								
	ほ う 素 (mg/l)								
	1,4- シ * オ キ サ ン (mg/l)							<0.005	0/2
	銅 (mg/l)						Ì	<0.04	-/1
特	鉄 (溶 解 性) (mg/l)					0.08	0.08	0.08	-/1
殊	マンカ゛ン (溶 解 性) (mg/l)					0.07	0.07	0.07	-/1
項目	7 П Д (mg/l)								
	フェノール 類 (mg/l)								
ш				I .	i		ı		

水 域 名		熊 里	₹ JII			市日	田 川	
地 点 名	熊野	川河口(A【	補】,生物Bl	【補】)		貯木橋(D	【基】, 一)	
測定值	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
E P N (mg/l)								
フェノール (mg/l)								
クロロホルム (mg/l)							<0.001	-/2
ホルムアルデヒド (mg/l)								
4-t- オクチルフェノール (mg/l)								
ア ニ リ ン (mg/l)								
2,4- ジクロロフェノー ル (mg/l)								
トランス-1,2-ジクロロエチレン(mg/l)								
1,2 — ジ ク ロ ロ プ ロ パ ン (mg/l)								
p — ジ ク ロ ロ ベ ン ゼ ン (mg/l)								
イソキサチオン (mg/l)								
ダ イ ア ジ ノ ン (mg/l)								
フェニトロチオン(MEP)(mg/l)								
イソプロチオラン (mg/l)								
オキシン銅(有機銅)(mg/l)								
要 クロロタロニル (TPN) (mg/l)								
<u>監</u> プロピザミド (mg/l)								
視								
目 フェノブカルブ (BPMC)(mg/l)								
イプロベンホス(IBP)(mg/l)								
クロルニトロフェン (CNP)(mg/l)								
ト ル エ ン (mg/l)								
キ シ レ ン (mg/l)								
フタル酸ジエチルヘキシル(mg/l)								
ニ ッ ケ ル (mg/l)							<0.001	-/2
モ リ ブ デ ン (mg/l)								
ア ン チ モ ン (mg/l)								
塩 化 ビニ ル モ ノマ ー (mg/l)								
エピクロロヒドリン (mg/l)								
全 マ ン ガ ン (mg/l)								
ウ ラ ン (mg/l)								
P F O S ※ 2(ng/l)								
P F O A ※ 3(ng/l)								
PFOS及びPFOA(ng/l)					3.6	3.6	3.6	-/1
ア ン モ ニ ア 性 窒 素 (mg/l)								
硝 酸 性 窒 素 (mg/l)	0.095	0.09	0.1	-/2	0.43	0.21	0.62	-/4
亜 硝 酸 性 窒 素 (mg/l)			<0.01	-/2	0.04	0.01	0.09	-/4
リン酸性リン (mg/l)								
そ	4	1	14	-/12	4	2	8	-/12
他 トリハロメタン 生成 能 (mg/l)								
項 2 — M I B (μ g/l)								
目 ジ オ ス ミ ン (μ mg/l)								
塩化物イオン(mg/l)	970	196	2930	-/4	630	69	2610	-/12
塩 分 濃 度 (‰)								
電 気 伝 導 率 (μ S/cm)	4100	766	12900	-/4	2000	34	7850	-/12
(1th tw)				1				

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 ※1 総測定回数は通日調査を含む。

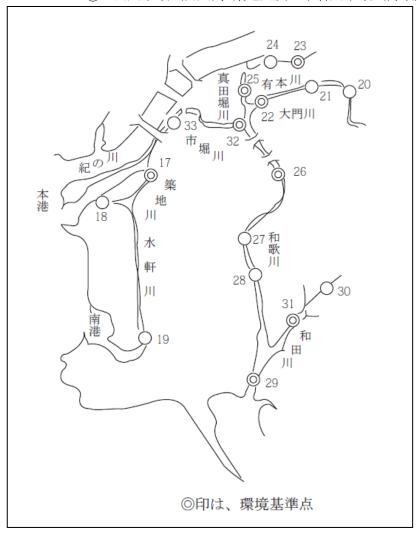
ただし、BOD・CODは、通日調査の日平均値を1回の測定分として、測定回数に加算。

※2 ペルフルオロオクタンスルホン酸(PFOS)

※3 ペルフルオロオクタン酸(PFOA)

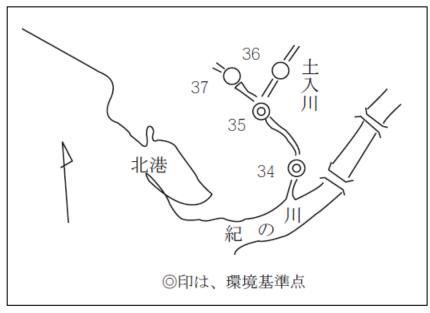
	기	(域	名			市日	B JII	
	地	点	名			貯木橋(D【基】	, 一)(通日夏)	
	測定項		測 5	定 値	平均	最小値	最大値	m/n
生	р		Н			7.2	7.5	0/12
活	D		0	(mg/l)	6.8	4.4	8.1	0/12
環境								
項	В	0	D	(mg/l)	0.9	<0.5	1.9	0/12
目	s		S	(mg/l)	3	2	6	0/12
7	С	0	D	(mg/l)	2.1	0.9	4.9	-/12
その	濁		度	(mg/l)	5	3	8	-/12
の他	塩 化	物	イオン	(mg/l)	1000	501	1250	-/12
	電気低	云導	率()	u S/cm)	3500	1860	4250	-/12

	水	域	名			市日	B JII	
		地	点 名			貯木橋(D【基】	, 一)(通日冬)	
	測 定 項		測 定	: 値 ———	平均	最小値	最大値	m/n
生	р		Н			7.2	7.5	0/12
活	D		0	(mg/l)	8.3	6.8	10	0/12
環境								
項	В	0	D	(mg/l)	3.1	1.5	5.1	0/12
目	S		S	(mg/l)	4.6	2	7	0/12
7	С	0	D	(mg/l)	4.2	2.2	6.2	-/12
その	濁		度	(mg/l)	5	2	7	-/12
他	塩 化	物	イォン	(mg/l)	2200	1120	3060	-/12
	電気伝	5. 導	率(μ	S/cm)	6300	3580	8750	-/12


(備考) m:環境基準に適合しない検体数 n:総検体数

2-23 和歌山市の水質測定結果

和歌山市内の公共用水域及び地下水の常時監視並びに工場排水の水質測定等は、和歌山市が実施している。


和歌山市地域の水質測定点は①及び②、水質測定結果は③のとおりである。

① 内川水域(河川)、築地川及び水軒川水域(海域)測定点図(和歌山市測定分)

20	鳴神橋
21	新在家橋
22	伊勢橋
23	若宮橋
24	有本川
25	甫斉橋
26	海草橋
27	新堀橋
28	仮堰
29	旭橋
30	丈夫橋
31	新橋
32	住吉橋
33	材木橋
34	土入橋
35	河合橋
36	島橋
37	梶橋

② 土入川水域(河川)測定点図(和歌山市測定分)

③ 大門川・有本川・真田堀川・和歌川・市堀川・和田川・土入川水域水質測定結果一覧

	水 域 名							大 「	門 川					
	地 点 名			鳴神橋(C	【補】, 一)			新在家橋	C【補】, 一)			伊勢橋(C	(基], 一)	
測	測 定 値 定 項 目		平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н			7.4	7.9	0/12		7.2	7.8	0/12		7.4	8.0	0/12
	D O	(mg/l)	9.1	7.9	10	0/12	7.5	5.4	9	0/12	5.2	3.1	7.2	5/12
			(3.5)				(8.6)				(2.8)			
	B O D	(mg/l)	3.0	1.3	6.1	2/12	6.4	1.3	18.0	5/12	3.6	1.6	13	3/12
ļ_	C O D	(mg/l)	6.2	2.8	9.3	-/12	9.3	3.5	21	-/12	7.4	3.8	18	-/12
生活	S S	(mg/l)	4	1	10	0/12	5	2	11	0/12	5	2	8	0/12
環境	大腸菌数(CF	U/100ml)												
項	N - へ キ サ ン 抽 出 物 🦠	質(mg/l)									0.6	0.6	0.6	-/6
目	全 窒 素	(mg/l)	2.5	0.63	4.3	-/6	3.8	0.94	8	-/6	2.6	1	3.9	-/6
	全 燐	(mg/l)	0.46	0.17	0.66	-/6	0.34	0.12	0.52	-/6	0.25	0.1	0.38	-/6
	全 亜 鉛	(mg/l)									0.006	<0.001	0.010	-/6
	ノニルフェノール	/ (mg/l)											<0.00006	-/1
	L A S	(mg/l)									0.0022	0.0022	0.0022	-/1
	カト・ミウム	(mg/l)			<0.0003	0/6			<0.0003	0/6			<0.0003	0/6
	全 シ ア ン	(mg/l)											<0.1	0/4
	鉛	(mg/l)			<0.005	0/6			<0.005	0/6			<0.005	0/6
	六 価 クロム	(mg/l)	0.01	<0.01	0.01	0/6			<0.01	0/6			<0.01	0/6
	砒 素	(mg/l)			<0.001	0/6			<0.001	0/6			<0.001	0/6
	総 水 銀	(mg/l)											<0.0005	0/4
	アルキル水銀	(mg/l)												
健	P C B	(mg/l)											<0.0005	0/4
	シ゛クロロメタン	(mg/l)											<0.002	0/4
	四塩化炭素	(mg/l)											<0.0002	0/4
	1,2- э * クロロエタ:	ン (mg/l)											<0.0004	0/4
康	1,1- シ゛クロロェチレ	ン (mg/l)											<0.002	0/4
	シス -1,2- シ゛クロロェチレ	ン (mg/l)											<0.004	0/4
	1,1,1- トリクロロエタ:	ン (mg/l)											<0.01	0/4
_	1,1,2- トリクロロエタ:	ン (mg/l)											<0.0006	0/4
項	トリクロロエチレン	v (mg/l)											<0.001	0/4
	テトラクロロエチレ:	ン (mg/l)											<0.001	0/4
	1,3- シ クロロフ ゚ロ ヘ ゚	ン(mg/l)											<0.0002	0/4
目	ў ў ў Д	(mg/l)											<0.0006	0/4
-	y y y y	(mg/l)											<0.0003	0/4
	チオヘ゜ンカルフ												<0.002	0/4
	^ ^ > t ^ >												<0.001	0/3
	セレン	(mg/l)											<0.001	0/4
	硝酸性窒素及び亜硝酸性窒		1.6	0.45	2.5	0/4	1.3	0.52	1.9	0/4	0.87	0.54	1.6	0/4
	ふっ素	(mg/l)									0.3	0.1	0.5	0/4
	ほう素	(mg/l)									1.1	<0.1	2.1	2/4
_	1,4- > * * * * * * * * * * * * * * * * * *				(0.01	/2			/0.24	/^	1		<0.005	0/4
,	銅鱼鱼鱼鱼	(mg/l)			<0.04	-/6			<0.04	-/6			<0.04	-/6
特殊	鉄 (溶解性)										1			
項目	マンカ゛ン(溶解性)				(0.05	15			(0.0-	15			/0.0-	15
=	ク ロ ム コ - ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	(mg/l)			<0.03	-/6			<0.03	-/6			<0.03	-/6
Щ	フェノール 類	(mg/l)												

	水 域 名						大 [9 川					
	地 点 名		鳴神橋(C	(補], 一)				(C【補】, 一)			伊勢橋(C	(基], 一)	
281	測定値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
測	定項目 E P N (mg/l)									0.0006	<0.0006	0.0006	-/4
	7 I / - 1 (mg/l)									0.000	<0.001	0.001	-/4
	クロロホルム (mg/l)									0.001	10.001	0.001	, ,
	ホルムアルデヒド (mg/l)												
	4-t- オクチルフェノール (mg/l)												
	ア ニ リ ン (mg/l)												
	2,4- ジクロロフェノー ル (mg/l)												
	トランス-1,2-ジクロロエチレン(mg/l)												
	1,2 — ジ ク ロ ロ プ ロ パ ン (mg/l)												
	p ー ジ ク ロ ロ ベ ン ゼ ン (mg/l)												
	イ ソ キ サ チ オ ン (mg/l)												
	ダ イ ア ジ ノ ン (mg/l)												
	フェニトロチオン(MEP)(mg/l)												
	イ ソ プ ロ チ オ ラ ン (mg/l)												
	オ キ シ ン 銅 (有 機 銅)(mg/l)												
要	クロロタロニル (TPN) (mg/l)												
監視	プ ロ ピ ザ ミ ド (mg/l)												
項	ジ ク ロ ル ボ ス (DDVP)(mg/l)												
目	フェノブカルブ (BPMC)(mg/l)												
	イ プ ロ ベ ン ホ ス (IBP)(mg/l)												
	クロルニトロフェン (CNP)(mg/l)												
	ト ル エ ン (mg/l)												
	キ シ レ ン (mg/l)												
	フタル 酸ジェチルヘキシル(mg/l)												
	ニ ッ ケ ル (mg/l)												
	モ リ ブ デ ン (mg/l)												
	ア ン チ モ ン (mg/l)												
	塩 化 ビ ニ ル モ ノ マ ― (mg/l)												
	エピクロロヒドリン (mg/l)												
	全 マ ン ガ ン (mg/l)												
	ウ ラ ン (mg/l)										<u> </u>		
	P F O S ※ 2(ng/l)												
	P F O A ** 3(ng/l)												
_	PFOS及びPFOA(ng/l)	0.00	(0.00	0.01			0.00		/4	0.70	0.54		-/4
	ア ン モ ニ ア 性 窒 素 (mg/l)	0.33	<0.06	0.81	-/4	2.20	0.33	5.0	-/4	0.73	0.51	1	-/4
	硝酸性窒素 (mg/l)	1.5	0.44	2.4	-/4	1.2	0.49	1.8	-/4 -/4	0.8	0.48	1.5	-/4
	亜 硝 酸 性 窒 素 (mg/l)	0.10	0.01	0.17	-/4	0.18	0.03	0.46	-/4 -/4	0.07	0.04	0.09	-/4
その	リン酸性リン(mg/l) 濁度 (度)	0.33	0.11	0.55	-/4	0.25	0.10	0.37	-/4	0.15	0.07	0.28	-/4
の他	<u> </u>												
の項	2 - M I B (μ g/l)									-			
目	ジ オ ス ミ ン (μ mg/l)												
	<u>塩化物イオン (mg/l)</u>	15	6	28	-/12	62	16	150	-/12	4400	210	10000	-/12
	塩 分 濃 度 (‰)						1				-10	,	
	電 気 伝 導 率 (μ S/cm)	230	130	350	-/12	470	180	980	-/12	11000	770	26000	-/12
<u>_</u>	#考)※1 x:環境基準に適合した				5		は 75%値	1	· -	1	-		· -

(備考) ※1 x: 環境基準に適合しない日数 y: 総測定日数 () 内は75%値 ※2 ペルフルオロオクタンスルホン酸(PFOS) ※3 ペルフルオロオクタン酸(PFOA)

	水 域 名				有 2	k)					真田	堀川	
	地 点 名		若宮橋(C	【基】, 一)			有本川橋(C【補】, 一)			甫斉橋(C	(基], 一)	
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		7.3	8.0	0/12		7.5	7.9	0/12		7.4	7.9	0/12
	D O (mg/l)	6.9	5.1	9.5	0/12	7.2	5.3	10	0/12	5.7	3.3	9.5	5/12
		(2.5)				(2.7)				(3.6)			
	B O D (mg/l)	2.8	1.0	11	2/12	3.0	1.1	11	1/12	4.2	1.6	12.0	3/12
	C O D (mg/l)	4.8	2.6	17	-/12	5.4	3.1	17	-/12	6.4	3.2	18	-/12
生活	S S (mg/l)	9	2	17	0/12	10	3	24	0/12	6	2	13	0/12
環境	大 腸 菌 数 (CFU/100ml)												
項	N - へ キ サ ン 抽 出 物 質 (mg/l)	0.5	0.5	0.5	-/6							<0.5	0/6
目	全 窒 素 (mg/l)	3.1	1.2	11	-/6	3	1.3	8.7	-/6	5	1.8	10	-/6
	全 燐 (mg/l)	0.36	0.14	1.1	-/6	0.47	0.19	0.96	-/6	0.4	0.14	0.64	-/6
	全 亜 鉛 (mg/l)	0.003	0.001	0.005	-/6					0.002	<0.001	0.004	-/5
	ノニ ル フ ェ ノ ― ル (mg/l)			<0.00006	-/1							<0.00006	-/1
	L A S (mg/l)			<0.0006	-/1							<0.0006	-/1
	カ ト ° ξ ウ ム (mg/l)			<0.0003	0/6			<0.0003	0/6			<0.0003	0/6
	全 シ ア ン (mg/l)			<0.1	0/4							<0.1	0/4
	鉛 (mg/l)			<0.005	0/6			<0.005	0/6			<0.005	0/6
	六 価 ク ロ ム (mg/l)			<0.01	0/6			<0.01	0/6			<0.01	0/6
	砒 素 (mg/l)			<0.001	0/6	0.001	<0.001	0.001	0/6			<0.001	0/6
	総 水 銀 (mg/l)			<0.0005	0/4							<0.0005	0/4
	アルキル水銀 (mg/l)												
健	P C B (mg/l)			<0.0005	0/4							<0.0005	0/4
~	シ [*] ク ロ ロ メ タ ン (mg/l)			<0.002	0/4							<0.002	0/4
	四塩化炭素(mg/l)			<0.0002	0/4							<0.0002	0/4
	1,2- シ			<0.0004	0/4							<0.0004	0/4
康	1,1- シ [*] クロロエチレン (mg/l)			<0.002	0/4							<0.002	0/4
	シス -1,2- シ゛クロロエチレン (mg/l)			<0.004	0/4							<0.004	0/4
	1,1,1- ト リ ク ロ ロ エ タ ン (mg/l)			<0.01	0/4							<0.01	0/4
	1,1,2- トリカロロエタン (mg/l)			<0.0006	0/4							<0.0006	0/4
項	トリクロロエチレン (mg/l)			<0.001	0/4							<0.001	0/4
	テトラクロロエチレン (mg/l)			<0.001	0/4							<0.001	0/4
	1,3- シ			<0.0002	0/4							<0.0002	0/4
目	チ ウ ラ ム (mg/l)			<0.0006	0/4							<0.0006	0/4
=	9 7 9 J (mg/l)			<0.0003	0/4							<0.0003	0/4
	チオヘ゛ンカルフ゛(mg/l)			<0.002	0/4							<0.002	0/4
	へ * ソ セ * ソ (mg/l)			<0.001	0/4							<0.001	0/4
	セレン (mg/l)			<0.001	0/4							<0.001	0/4
	硝酸性窒素及び亜硝酸性窒素(mg/l)	0.62	0.37	0.77	0/4	0.66	0.51	0.78	0/4	0.58	0.46	0.73	0/4
	ふ っ 素 (mg/l)	0.18	0.1	0.3	0/4					0.2	0.2	0.2	0/3
	ほ う 素 (mg/l)	0.7	0.1	1.3	1/4					0.7	0.6	0.8	0/3
	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/4							<0.005	0.4
	銅 (mg/l)	<u> </u>		<0.04	-/6			<0.04	-/6			<0.04	-/6
特殊	鉄 (溶 解 性) (mg/l)	<u> </u>											
項	マンカ゛ン(溶 解 性) (mg/l)	<u> </u>											
目	7 П Д (mg/l)	<0.03	<0.03	<0.03	-/6			<0.03	-/6			<0.03	-/6
	フェノール類 (mg/l)	<u> </u>											

水 域 名				有	本 川					真 田	堀川	
地 点 名		若宮橋(C	【基】, 一)			有本川橋([C【補】, 一)			甫斉橋(C	(基], 一)	
測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
E P N (mg/l)			<0.0006	-/4							<0.0006	-/4
フ ェ ノ ー ル (mg/l)			<0.001	-/4							<0.001	-/4
クロロホルム (mg/l)												
ホルムアルデヒド (mg/l)												
4-t- オクチルフェノール (mg/l)												
ア ニ リ ン (mg/l)												
2,4- ジクロロフェノー ル (mg/l)												
トランス-1,2-ジクロロエチレン(mg/l)												
1,2 — ジ ク ロ ロ プ ロ パ ン (mg/l)												
p ー ジ ク ロ ロ ベ ン ゼ ン (mg/l)												
イ ソ キ サ チ オ ン (mg/l)												
ダ イ ア ジ ノ ン (mg/l)												
フェニトロチ オン(MEP)(mg/l)												
イ ソ プ ロ チ オ ラ ン (mg/l)												
オ キ シ ン 銅 (有 機 銅)(mg/l)												
要 クロロタロニル(TPN)(mg/l)												
監 プロピザミド (mg/l)												
視 項 ジ ク ロ ル ボ ス (DDVP)(mg/I)												
目 フェノブカルブ (BPMC)(mg/l)												
イ プ ロ ベ ン ホ ス (IBP)(mg/l)												
クロルニトロフェン (CNP)(mg/l)												
ト ル エ ン (mg/l)												
キ シ レ ン (mg/l)												
フタル 酸ジェチルヘキシル(mg/l)												
ニ ッ ケ ル (mg/l)												
モ リ ブ デ ン (mg/l)												
ア ン チ モ ン (mg/l)												
塩 化 ビ ニ ル モ ノ マ ー (mg/l)												
エピクロロヒドリン (mg/l)												
全 マ ン ガ ン (mg/l)												
ウ ラ ン (mg/l)												
P F O S ※ 2(ng/l)												
P F O A ※ 3(ng/l)												
PFOS及びPFOA(ng/l)												
ア ン モ ニ ア 性 窒 素 (mg/l)	0.49	0.28	0.82	-/4	0.81	0.37	1.8	-/4	2.2	0.55	5.6	-/4
硝 酸 性 窒 素 (mg/l)	0.58	0.35	0.72	-/4	0.62	0.45	0.71	-/4	0.51	0.41	0.66	-/4
亜 硝 酸 性 窒 素 (mg/l)	0.035	0.02	0.08	-/4	0.05	0.02	0.07	-/4	0.07	0.04	0.11	-/4
マープ 女 酸 性 リ ン (mg/l)	0.16	80.0	0.30	-/4	0.21	0.12	0.34	-/4	0.25	0.10	0.32	-/4
の												
の 「 り バ ロ ス タ フ 主 成 能 (mg/l)												
項 2 - M I B (μ g/l) 目 :												
ジ オ ス ミ ン (μ mg/l)												
塩化物イオン(mg/l)	4400	38	10000	-/12	4100	42	9600	-/12	4800	50	19000	-/12
塩分濃度(‰)	105	05-	07677	//	44.555			//-	0/		046	
電 気 伝 導 率 (μ S/cm)	12000	250	27000	-/12	11000	270	24000	-/12	9400	310	24000	-/12

(備考) ※1 x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 ※2 ペルフルオロオクタンスルホン酸(PFOS) ※3 ペルフルオロオクタン酸(PFOA)

	水 域 名						和 哥	次 川					
	地 点 名		海草橋(E	【基】, 一)			新堀橋(B	3【補】, 一)			小雑賀橋(B【補】, 一)	
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		7.2	7.9	0/12		7.2	8.0	0/12		7.6	8.0	0/12
	D O (mg/l)	5.1	3.3	6.6	3/12	5.6	3.2	8.4	3/12	5.9	4.3	8.6	3/12
		(2)				(1.7)				(1.5)			
	B O D (mg/l)	2.6	1.0	8.4	2/12	2.4	0.8	8.8	2/12	1.7	0.9	5.0	1/12
生	C O D (mg/l)	3.8	2.7	5.9	-/12	3.9	2.6	6.9	-/12	3.7	2.6	6.2	-/12
活	S S (mg/l)	4	1	14	0/12	4	2	12	0/12	4	2	9	0/12
環境	大 腸 菌 数 (CFU/100ml)												
項目	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	0/6								
	全 窒 素 (mg/l)	1.7	1.5	2.1	-/6	1.7	1.4	2.1	-/6	1.9	1.5	2.4	-/6
	全 燐 (mg/l)	0.21	0.15	0.34	-/6	0.22	0.12	0.38	-/6	0.23	0.13	0.37	-/6
	全 亜 鉛 (mg/l)	0.005	0.002	0.011	-/6								
	ノニ ル フェ ノー ル (mg/l)			<0.00006	-/1								
<u></u>	L A S (mg/l)			<0.0006	-/1								
	カ ト ゜ ミ ウ ム (mg/l)			<0.0003	0/6			<0.0003	0/6			<0.0003	0/6
	全 シ ァ ン (mg/l)			<0.1	0/4								
	鉛 (mg/l)			<0.005	0/6			<0.005	0/6			<0.005	0/6
	六 価 ク ロ ム (mg/l)			<0.01	0/6			<0.01	0/6			<0.01	0/6
	砒 素 (mg/l)	0.001	<0.001	0.001	0/6	0.001	<0.001	0.001	0/6	0.001	<0.001	0.001	0/6
	総 水 銀 (mg/l)			<0.0005	0/4								
	アルキル水 銀 (mg/l)												
健	P C B (mg/l)			<0.0005	0/4								
	シ * ク ロ ロ メ タ ン (mg/l)			<0.002	0/4								
	四塩化炭素(mg/l)			<0.0002	0/4								
	1,2- シ * クロロエタン (mg/l)			<0.0004	0/4								
康	1,1- シ			<0.002	0/4								
	シス -1,2- シ * クロロエチレン (mg/l)			<0.004	0/4								
	1,1,1- ト リ ク ロ ロ エ タ ン (mg/l)			<0.01	0/4								
項	1,1,2- トリクロロエタン (mg/l) トリクロロエチレン (mg/l)			<0.0006	0/4								
	テ ト ラ ク ロ ロ エ チ レ ン (mg/l) テ ト ラ ク ロ ロ エ チ レ ン (mg/l)			<0.001 <0.001	0/4								
	1,3- シ クロロフ ゚ロヘ ゚ン (mg/l)			<0.001	0/4								
				<0.0002	0/4								
目	チ ウ ラ ム (mg/l) シ マ シ ・ ン (mg/l)			<0.0008	0/4								
	タマク フ (mg/l) チオヘ゜ンカルフ゜(mg/l)			<0.0003	0/4								
	イ ・ ン セ ・ ン (mg/l)			<0.002	0/4						-		
	セ レ ン (mg/l)			<0.001	0/4								
	硝酸性窒素及び亜硝酸性窒素(mg/l)	0.68	0.41	0.92	0/4	0.69	0.21	1.1	0/4	0.69	0.24	1.1	0/4
	ふ っ 素 (mg/l)	0.63	0.2	0.9	1/4	0.53	0.2	0.7	0/4	0.6	0.3	0.8	0/4
	ほう 素 (mg/l)	2.5	0.5	3.2	3/4	2.3	0.7	3.2	3/4	2.8	1.0	3.6	3/4
ŀ	1,4- シ * オ キ サ ン (mg/l)		-10	<0.005	0/4							-/-	
-	銅 (mg/l)			<0.04	-/6			<0.04	-/6			<0.04	-/6
特	鉄 (溶 解 性) (mg/l)							-				_	
殊	マンカ [*] ン(溶解性) (mg/l)												
項目	7 П Д (mg/l)			<0.03	-/6			<0.03	-/6			<0.03	-/6
	フェノール類 (mg/l)												
	7. AR (111g/17		1					لــــــا		l		لـــــــا	

水 域 名						和	歌 川					
地 点 名		海草橋(E	[基], 一)			新堀橋(E	3【補】, 一)			小雑賀橋(B【補】, 一)	
測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
E P N (mg/l)			<0.0006	-/4								
フ ェ ノ ー ル (mg/l)			<0.001	-/4								
クロロホルム (mg/l)												
ホルムアルデヒド (mg/l)												
4-t- オクチルフェノール (mg/l)												
ア ニ リ ン (mg/l)												
2,4- ジクロロフェノー ル (mg/l)												
トランス-1,2-ジクロロエチレン(mg/l)												
1,2 — ジ ク ロ ロ プ ロ パ ン (mg/l)												
p ー ジ ク ロ ロ ベ ン ゼ ン (mg/l)												
イ ソ キ サ チ オ ン (mg/l)												
ダ イ ア ジ ノ ン (mg/l)												
フェニトロチ オン(MEP)(mg/l)												
イ ソ プ ロ チ オ ラ ン (mg/l)												
オ キ シ ン 銅 (有 機 銅)(mg/l)												
要 クロロタロニル (TPN) (mg/l)												
監 プロピザミド (mg/l)												
項 ♥ジ ク ロ ル ボ ス (DDVP)(mg/l)												
目 フェノブカルブ (BPMC)(mg/l)												
イ プ ロ ベ ン ホ ス (IBP)(mg/l)												
クロルニトロフェン (CNP)(mg/l)												
ト ル エ ン (mg/l)												
キ シ レ ン (mg/l)												
フタル 酸ジェチルヘキシル(mg/l)												
ニ ッ ケ ル (mg/l)												
モ リ ブ デ ン (mg/l)												
ア ン チ モ ン (mg/l)												
塩 化 ビ ニ ル モ ノ マ ー (mg/l)												
エピクロロヒドリン (mg/l)												
全 マ ン ガ ン (mg/l)												
ウ ラ ン (mg/l)												
P F O S ※ 2(ng/l)												
P F O A ※ 3(ng/l)	ļ											
PFOS及びPFOA(ng/l)												
ア ン モ ニ ア 性 窒 素 (mg/l)		0.15	0.49	-/4	0.28	0.16	0.56	-/4	0.28	0.15	0.55	-/4
硝酸性窒素(mg/l)	0.63	0.39	0.9	-/4	0.62	0.20	1.00	-/4	0.63	0.23	1.00	-/4
亜 硝 酸 性 窒 素 (mg/l)		0.02	0.11	-/4	0.05	0.01	0.11	-/4	0.05	0.01	0.12	-/4
リン酸性リン (mg/l) で	0.13	0.10	0.17	-/4	0.20	0.08	0.34	-/4	0.20	0.09	0.34	-/4
の 度 (度 トリハロメタン生成能(mg/l)	 											
の F リハロメダン 主 成 能 (mg/l)												
月 $\frac{2}{2}$ $-$ M I B (μ g/l) π オスミン(μ mg/l)												
<u> </u>		3200	15000	-/12	13000	4200	15000	-/12	13000	6200	16000	-/12
塩分濃度(‰)	12000	0200	10000	/ 12	10000	7200	10000	/ 14	15000	0200	10000	/12
電 気 伝 導 率 (μ S/cm)	30000	8900	37000	-/12	31000	11000	37000	-/12	31000	16000	38000	-/12
(備考) ※1 x:環境基準に適合した		1					1	, 12	3.000	1 .5500	22300	, 12

(備考) ※1 x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 ※2ペルフルオロオクタンスルホン酸(PFOS) ※3ペルフルオロオクタン酸(PFOA)

	水 域 名		和 哥	欧 川					和 E	Э ЛІ			
	地 点 名		旭橋(B【	(基], 一)			丈夫橋(E	3【補】, 一)			新橋(B	[基], 一)	
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		7.5	8.1	0/12		7.4	8.0	0/12		7.5	7.9	0/12
	D O (mg/l)	6.7	5.3	8.9	0/12	6.2	4.0	9	1/12	5.8	4.3	8.8	1/12
		(1.8)				(3.6)				(2.2)			
	B O D (mg/l)	1.6	0.6	3.3	1/12	3.1	1.3	11.0	4/12	2.0	1.4	2.9	0/12
生	C O D (mg/l)	3.4	1.5	5.6	-/12	6.8	5.0	10	-/12	5.2	4.2	6.7	-/12
活	S S (mg/l)	3	2	6	0/12	7	4	18	0/12	5	3	10	0/12
環境	大 腸 菌 数 (CFU/100ml)												
項目	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	0/6							<0.5	0/6
	全 窒 素 (mg/l)	2.5	0.88	4.3	-/6	2.4	1.1	3.2	-/6	2.6	1.9	3.3	-/6
	全 燐 (mg/l)	0.37	0.11	0.74	-/6	0.37	0.26	0.49	-/6	0.4	0.26	0.59	-/6
	全 亜 鉛 (mg/l)	0.004	<0.001	0.013	-/6					0.003	<0.001	0.004	-/6
	ノニ ル フェ ノー ル (mg/l)			<0.00006	-/1							<0.00006	-/1
	L A S (mg/l)			<0.0006	-/1							<0.0006	-/1
	カ ト ゜ ミ ウ ム (mg/l)			<0.0003	0/6			<0.0003	0/6			<0.0003	0/6
	全 シ ア ン (mg/l)			<0.1	0/4							<0.1	0/4
	鉛 (mg/l)			<0.005	0/6			<0.005	0/6			<0.005	0/6
	六 価 ク ロ ム (mg/l)			<0.01	0/6			<0.01	0/6			<0.01	0/6
	砒 素 (mg/l)	0.001	<0.001	0.001	0/6	0.001	<0.001	0.001	0/6	0.001	<0.001	0.001	0/6
	総 水 銀 (mg/l)			<0.0005	0/4							<0.0005	0/4
	ア ル キ ル 水 銀 (mg/l)												
健	P C B (mg/l)			<0.0005	0/4							<0.0005	0/4
	シ * ク ロ ロ メ タ ン (mg/l)			<0.002	0/4							<0.002	0/4
	四塩化炭素(mg/l)			<0.0002	0/4							<0.0002	0/4
	1,2- シ * ク ロ ロ エ タ ン (mg/l)			<0.0004	0/4							<0.0004	0/4
康	1,1- シ * クロロエチレン (mg/l)			<0.002	0/4							<0.002	0/4
	シス -1,2- シ゛クロロエチレン (mg/l)			<0.004	0/4							<0.004	0/4
	1,1,1- トリクロロエタン (mg/l)			<0.01	0/4							<0.01	0/4
項	1,1,2- ト リ ク ロ ロ エ タ ン (mg/l)			<0.0006	0/4							<0.0006	0/4
	トリクロロエチレン (mg/l)			<0.001	0/4							<0.001	0/4
	〒トラクロロエチレン (mg/l) 1,3−シ クロロフ °ロヘ °ン (mg/l)			<0.001	0/4							<0.001	0/4
				<0.0002 <0.0006	0/4							<0.0002 <0.0006	0/4
目	チ ウ ラ ム (mg/l) シ マ シ ・ ン (mg/l)			<0.0008	0/4							<0.0008	0/4
	チ オ へ ・ン カ ル フ ・ (mg/l)			<0.0003	0/4							<0.0003	0/4
	イ・ソセ・ソ (mg/l)			<0.002	0/4							<0.002	0/4
	セ レ ン (mg/l)			<0.001	0/4							<0.001	0/4
	硝酸性窒素及び亜硝酸性窒素(mg/l)	0.53	0.28	0.77	0/4	0.92	0.68	1.1	0/4	0.71	0.42	1.1	0/4
	ふっ素 (mg/l)	0.58	0.3	0.8	0/4					0.38	0.2	0.7	0/4
	ほ う 素 (mg/l)	2.6	1	3.7	3/4					1.6	0.5	3.1	3/4
	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/4							<0.005	0/4
	銅 (mg/l)			<0.04	-/6			<0.04	-/6			<0.04	-/6
特	鉄 (溶 解 性) (mg/l)												
殊項	マンカ [*] ン(溶解性)(mg/l)												
目	7 П Д (mg/l)			<0.03	-/6			<0.03	-/6			<0.03	-/6
	フェノール類 (mg/l)												
	,,					•	·			•	`		

	水 域 名		和	次 川					和 I	田 川			
	地 点 名		旭橋(B	[基], 一)			丈夫橋(E	3【補】, 一)		新橋(B【基】, 一)			
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	х/у	平均	最小値	最大値	х/у
	E P N (mg/l)			<0.0006	-/4							<0.0006	-/4
	フ ェ ノ ー ル (mg/l)			<0.001	-/4							<0.001	-/4
	クロロホルム (mg/l)												
	ホルムアルデヒド (mg/l)												
	4-t- オクチルフェノール (mg/l)												
	ア ニ リ ン (mg/l)												
	2,4- ジクロロフェノー ル (mg/l)												
	トランス-1,2-ジクロロエチレン(mg/l)												
	1,2 — ジ ク ロ ロ プ ロ パ ン (mg/l)												
	p ー ジ ク ロ ロ ベ ン ゼ ン (mg/l)												
	イ ソ キ サ チ オ ン (mg/l)												
	ダ イ ア ジ ノ ン (mg/l)												
	フェニトロチオン(MEP)(mg/l)												
	イ ソ プ ロ チ オ ラ ン (mg/l)												
	オ キ シ ン 銅 (有 機 銅)(mg/l)												
要	クロロタロニル (TPN) (mg/l)												
監	プ ロ ピ ザ ミ ド (mg/l)												
視項													
目	フェノブカルブ (BPMC)(mg/l)												
	イプロベンホス(IBP)(mg/l)												
	クロルニトロフェン (CNP)(mg/l)												
	ト ル エ ン (mg/l)												
	キ シ レ ン (mg/l)												
	フタル 酸ジェチルヘキシル(mg/l)												
	= ッ ケ ル (mg/l)												
	モ リ ブ デ ン (mg/l)												
	ア ン チ モ ン (mg/l)												
	塩 化 ビ ニ ル モ ノ マ ー (mg/l)												
	エピクロロヒドリン (mg/l)												
	全 マ ン ガ ン (mg/l)												
	ウ ラ ン (mg/l)												
	P F O S ※ 2(ng/l)												
	P F O A ※ 3(ng/l)												
L	PFOS及びPFOA(ng/l)												
	ア ン モ ニ ア 性 窒 素 (mg/l)	0.57	0.06	1.20	-/4	0.86	0.30	1.30	-/4	0.82	0.37	1.3	-/4
	硝 酸 性 窒 素 (mg/l)	0.50	0.27	0.72	-/4	0.87	0.63	1.1	-/4	0.64	0.36	1.00	-/4
	亜 硝 酸 性 窒 素 (mg/l)	0.03	0.01	0.05	-/4	0.07	0.05	0.09	-/4	0.058	0.04	0.08	-/4
そ	リ ン 酸 性 リ ン (mg/l)	0.29	0.10	0.55	-/4	0.33	0.18	0.41	-/4	0.35	0.18	0.50	-/4
の	濁 度 (度)												
他の	トリハロメタン生成能(mg/l)												
項目	2 — M Ι Β (μ g/l)												
	ジ オ ス ミ ン (μ mg/l)												
	塩 化 物 イ オ ン (mg/l)	12000	6800	18000	-/12	5600	1000	12000	-/12	7700	2500	13000	-/12
	塩 分 濃 度 (‰)												
L	電 気 伝 導 率 (μ S/cm)	30000	16000	43000	-/12	14000	3100	31000	-/12	19000	6800	32000	-/12
-	備考)※1 x:環境基準に適合した		_		M47 .		1. 550/ /=						

(備考) ※1 x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 ※2ペルフルオロオクタンスルホン酸(PFOS) ※3ペルフルオロオクタン酸(PFOA)

	水 域 名	市堀川									± ;		
	地 点 名		住吉橋(C	(基], 一)			材木橋(C	(補], 一)			梶橋(B【	【補】, 一)	
280	測 定 値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
炽	<u>р</u> Н		7.3	7.8	0/12		7.5	8.1	0/12		7.5	7.9	0/12
	D O (mg/l)	5.3	3.0	6.6	4/12	4.9	2.8	7.5	6/12	5.5	4.2	7.1	4/12
	2 (g, 7)	(2.5)	0.0	0.0	.,	(1.8)		7.0	9/ 12	(2.9)		7	.,
	B O D (mg/l)	2.2	1.0	6.5	1/12	1.6	0.8	4.4	0/12	2.4	1.3	4.2	3/12
١	C O D (mg/l)	5.5	3	10	-/12	3.3	1	5.7	-/12	5.5	3.9	6.8	-/12
生活	S S (mg/l)	3	1	5	0/12	2	1	4	0/12	5	3	8	0/12
環境	大 腸 菌 数 (CFU/100ml)												
項	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	0/6								
目	全 窒 素 (mg/l)	2.4	0.93	3.6	-/6	1.7	0.81	2.8	-/6	2.4	1.6	3.7	-/6
	全 燐 (mg/l)	0.2	0.05	0.27	-/6	0.13	0.06	0.23	-/6	0.37	0.23	0.53	-/6
ľ	全 亜 鉛 (mg/l)	0.005	0.002	0.01	-/6								
	ノニ ル フェ ノー ル (mg/l)			<0.00006	-/1								
	L A S (mg/l)	0.0013	0.0013	0.0013	-/1								
	カ ト ໍ ξ ウ ム (mg/l)			<0.0003	0/6			<0.0003	0/6			<0.0003	0/6
	全 シ ア ン (mg/l)			<0.1	0/4			<0.1	0/1			<0.1	0/1
	鉛 (mg/l)			<0.005	0/6			<0.005	0/6			<0.005	0/6
	六 価 ク ロ ム (mg/l)			<0.01	0/6			<0.01	0/6			<0.01	0/6
	砒 素 (mg/l)	0.001	<0.001	0.001	0/6	0.001	<0.001	0.001	0/6	0.001	<0.001	0.001	0/6
	総 水 銀 (mg/l)			<0.0005	0/4								
	ア ル キ ル 水 銀 (mg/l)												
健	P C B (mg/l)			<0.0005	0/4								
	シ [*] ク ロ ロ メ タ ン (mg/l)			<0.002	0/4			<0.002	0/1				
	四塩化炭素(mg/l)			<0.0002	0/4			<0.0002	0/1				
	1,2- シ [*] ク ロ ロ エ タ ン (mg/l)			<0.0004	0/4			<0.0004	0/1				
康	1,1- シ [*] クロロエチレン (mg/l)			<0.002	0/4			<0.002	0/1				
	シス -1,2- シ゛クロロエチレン (mg/l)			<0.004	0/4			<0.004	0/1				
	1,1,1- トリクロロエタン (mg/l)			<0.01	0/4			<0.01	0/1				
	1,1,2- トリクロロエタン (mg/l)			<0.0006	0/4			<0.0006	0/1				
項	トリクロロエチレン (mg/l)			<0.001	0/4			<0.001	0/1				
	テトラクロロエチレン (mg/l)			<0.001	0/4			<0.001	0/1				
	1,3- シ クロロフ ° ロヘ ° ン (mg/l)			<0.0002	0/4			<0.0002	0/1		<u> </u>		
目	チ ウ ラ ム (mg/l)			<0.0006	0/4								
	シマ シ ン (mg/l)			<0.0003	0/4								
	チオヘ゜ンカルフ゜(mg/l)			<0.002	0/4								
	へ * ソ セ * ソ (mg/l)			<0.001	0/4								
	セ レ ン (mg/l)	0.07	0.50	<0.001	0/4	0.40	0.00	0.00	0/4	0.00	0.01	110	0 /4
	硝酸性窒素及び亜硝酸性窒素(mg/l) ふ っ 素 (mg/l)	0.87	0.59 0.1	1.2 0.6	0/4	0.49	0.06	0.99	0/4	0.96	0.81	1.10 0.3	0/4
	ふっ素 (mg/l) ほう素 (mg/l)	0.3 1.5	0.1	2.8	2/4	2.5	0.2	3.8	3/4	0.23	0.2	1.2	1/4
-	1,4- シ * オ キ サ ン (mg/l)	1.0	0.2	<0.005	0/4	2.0	0.8	5.0	J/ 4	0.0	U.Z	1.2	1/4
_	1,4 ⁻ ノ オ キ サ ノ (mg/l) 銅 (mg/l)			<0.003	-/6			<0.04	-/6			<0.04	-/6
特	野 (mg/l) 鉄 (溶解性) (mg/l)			\0.04	70			\0.04	/ 0			\0.04	/ 0
殊	マンカ・ン(溶解性) (mg/l)												
項目	7 D A (mg/l)			<0.03	-/6			<0.03	-/6			<0.03	-/6
	フェノール 類 (mg/l)			νσ.σσ	, 0			(0.00	/ 0			(0.00	, 0
_	/v 規(mg/1/									l		1	

	水 域 名				市均	屈 川					± ,	λ 川	
	地 点 名	住吉橋(C[基], 一)							梶橋(B【補】, 一)				
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	E P N (mg/l)			<0.0006	-/4								
	フ ェ ノ ー ル (mg/l)			<0.001	-/4								
	クロロホルム (mg/l)												
	ホルムアルデヒド (mg/l)												
	4-t- オクチルフェノール(mg/l)												
	ア ニ リ ン (mg/l)												
	2,4- ジクロロフェノー ル (mg/l)												
	トランス-1,2-ジクロロエチレン(mg/l)												
	1.2 — ジ ク ロ ロ プ ロ パ ン (mg/l)												
	p ー ジ ク ロ ロ ベ ン ゼ ン (mg/l)												
	イ ソ キ サ チ オ ン (mg/l)												
	ダ イ ア ジ ノ ン (mg/l)												
	フェニトロチ オン(MEP)(mg/l)												
	イ ソ プ ロ チ オ ラ ン (mg/l)												
	オ キ シ ン 銅 (有 機 銅) (mg/l)												
要	クロロタロニル (TPN) (mg/l)										<u> </u>		
監視	プ ロ ピ ザ ミ ド (mg/l)												<u> </u>
項目	ジ ク ロ ル ボ ス (DDVP)(mg/l)												<u> </u>
	フェノブカルブ (BPMC)(mg/l)												<u> </u>
	イ プ ロ ベ ン ホ ス (IBP)(mg/l)												<u> </u>
	クロルニトロフェン (CNP)(mg/l)												<u> </u>
	ト ル エ ン (mg/l)												<u> </u>
	キ シ レ ン (mg/l)												
	フタル 酸ジェチ ルヘキシル (mg/l)												
	ニ ッ ケ ル (mg/l)												
	モ リ ブ デ ン (mg/l)												
	ア ン チ モ ン (mg/l)												
	塩 化 ビ ニ ル モ ノ マ ー (mg/l)												
	エピクロロヒドリン (mg/l)												
	全 マ ン ガ ン (mg/l) ウ ラ ン (mg/l)												
	ウ ラ ン (mg/l) P F O S ※ 2(ng/l)												
	P F O A ** 3(ng/l)												
	PFOS及びPFOA(ng/l)												
H	ア ン モ ニ ア 性 窒 素 (mg/l)	0.69	0.11	1.2	-/4	0.28	0.11	0.39	-/4	0.8	0.19	1.5	-/4
	硝 酸 性 窒 素 (mg/l)	0.81	0.57	1.20	-/4	0.60	0.14	0.92	-/4	0.89	0.77	1.00	-/4
	亜 硝 酸 性 窒 素 (mg/l)	0.08	0.02	0.10	-/4	0.04	0.02	0.07	-/4	0.09	0.04	0.13	-/4
	リ ン 酸 性 リ ン (mg/l)	0.15	0.09	0.20	-/4	0.12	0.05	0.18	-/4	0.28	0.14	0.37	-/4
その	濁 度 (度)												
他の	トリハロメタン生成能(mg/l)												
項	2 — M Ι Β (μ g/l)												
目	ジ オ ス ミ ン (μ mg/l)												
	塩 化 物 イ オ ン (mg/l)	6600	220	13000	-/12	12000	3800	17000	-/12	2800	660	6700	-/12
	塩 分 濃 度 (‰)												
	電 気 伝 導 率 (μ S/cm)	17000	3300	31000	-/12	28000	10000	42000	-/12	8500	2000	18000	-/12
(1		たい日巻	, v.	終測定F	1 数	() 内	11+ 75% fi	古					

(備考) ※1 x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 ※2 ペルフルオロオクタンスルホン酸(PFOS) ※3 ペルフルオロオクタン酸(PFOA)

	水 域 名						± ;	 λ //I					
	地 点 名		島橋(B【	[補], 一)				3【補】, 一)			土入橋(0	【基】, 一)	
測	測 定 値 定 項 目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	рН		7.5	7.8	0/12		7.5	7.8	0/12		7.6	8.1	0/12
	D O (mg/l)	5.2	3.0	7.7	4/12	5.4	3.2	7.6	3/12	6.8	4.1	9.1	1/12
		(2.8)				(2.9)				(2.3)			
	B O D (mg/l)	2.7	1.6	5.6	2/12	2.7	1.5	5.1	3/12	1.9	0.7	3.8	0/12
生	C O D (mg/l)	5.4	4.4	6.7	-/12	5.6	4.8	6.8	-/12	3.7	1.9	4.7	-/12
活	S S (mg/l)	8	4	11	0/12	8	4	10	0/12	4	2	7	0/12
環境	大 腸 菌 数 (CFU/100ml)												
項目	N - へ キ サ ン 抽 出 物 質 (mg/l)							<0.5	0/6			<0.5	0/6
ľ	全 窒 素 (mg/l)	2.8	2.1	4.1	-/6	2.6	1	4	-/6	1.6	0.93	2.9	-/6
	全	0.5	0.29	0.66	-/6	0.48	0.34	0.66	-/6	0.28	0.14	0.39	-/6
	全 亜 鉛 (mg/l)					0.008	<0.001	0.013	-/6	0.005	0.001	0.008	-/6
	ノニ ル フ ェ ノ ― ル (mg/l)							<0.00006	-/1			<0.00006	-/1
	L A S (mg/l)							<0.0006	-/1			<0.0006	-/1
	カト ・ ミ ウ ム (mg/l)			<0.0003	0/6			<0.0003	0/6			<0.0003	0/6
	全 シ ア ン (mg/l)			<0.1	0/1			<0.1	0/4			<0.1	0/4
	鉛 (mg/l)			<0.005	0/6			<0.005	0/6			<0.005	0/6
	六 価 ク ロ ム (mg/l)			<0.01	0/6			<0.01	0/6			<0.01	0/6
	砒 素 (mg/l)			<0.001	0/6	0.001	<0.001	0.001	0/6	0.001	<0.001	0.001	0/6
	総 水 銀 (mg/l)							<0.0005	0/4			<0.0005	0/4
	ア ル キ ル 水 銀 (mg/l)												
健	P C B (mg/l)							<0.0005	0/4			<0.0005	0/4
	シ * ク ロ ロ メ タ ン (mg/l)							<0.002	0/4			<0.002	0/4
	四塩化炭素(mg/l)							<0.0002	0/4			<0.0002	0/4
	1,2- シ ゙ ク ロ ロ エ タ ン (mg/l)							<0.0004	0/4			<0.0004	0/4
康	1,1- シ							<0.002	0/4			<0.002	0/4
	シス -1,2- シ゛クロロエチレン (mg/l)							<0.004	0/4			<0.004	0/4
	1,1,1- ト リ ク ロ ロ エ タ ン (mg/l)							<0.01 <0.0006	0/4			<0.001 <0.0006	0/4
項	1,1,2-トリクロロエタン (mg/l)							-					
Ĺ	トリクロロエチレン (mg/l)							<0.001	0/4			<0.001	0/4
	〒トラクロロエチレン (mg/l) 1,3-シ*クロロフ゜ロヘ゜ン (mg/l)							<0.001	0/4			<0.001 <0.0002	0/4
	1,3- クリロフロベ フ (mg/l) チ ウ ラ ム (mg/l)							<0.0002	0/4			<0.0002	0/4
目	_							<0.0003	0/4			<0.0003	0/4
	チオヘ゛ンカルフ゛(mg/l)							<0.002	0/4			<0.002	0/4
	へ ・ ン セ ・ ン (mg/l)							<0.002	0/4			<0.002	0/4
	セ レ ン (mg/l)							<0.001	0/4			<0.001	0/4
	硝酸性窒素及び亜硝酸性窒素(mg/l)	1.10	0.73	1.5	0/4	0.95	0.78	1.20	0/4	0.55	0.26	0.66	0/4
	ふ っ 素 (mg/l)	0.2	0.1	0.4	0/4	0.25	0.1	0.5	0/4	0.3	0.2	0.6	0/4
	ほ う 素 (mg/l)	0.75	0.1	1.8	1/4	0.8	0.1	1.9	1/4	1.2	0.3	2.8	1/4
ŀ	1,4- シ * オ キ サ ン (mg/l)							<0.005	0/4			<0.005	0/4
	銅 (mg/l)			<0.04	-/6			<0.04	-/6			<0.04	-/6
特	鉄 (溶 解 性) (mg/l)												
殊項	マンカ [*] ン(溶解性) (mg/l)												
目	7 П Д (mg/l)			<0.03	-/6			<0.03	-/6			<0.03	-/6
	フェノール類 (mg/l)												
			1			l				l			

水 域 名						± 2	λ 川						
地 点 名		島橋(B	[補], 一)			河合橋(E	3【補】, 一)		土入橋(C【基】, 一)				
測定值	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	
E P N (mg/l)							<0.0006	-/4			<0.0006	-/4	
フェノール (mg/l)							<0.001	-/4			<0.001	-/4	
クロロホルム (mg/l)													
ホルムアルデヒド (mg/l)													
4-t- オクチルフェノー ル (mg/l)													
ア ニ リ ン (mg/l)													
2,4- ジ ク ロ ロ フ ェ ノ ー ル (mg/l)													
トランス-1,2-ジクロロエチレン(mg/l)													
1,2 — ジ ク ロ ロ プ ロ パ ン (mg/l)													
p ー ジ ク ロ ロ ベ ン ゼ ン (mg/l)													
イ ソ キ サ チ オ ン (mg/l)													
ダ イ ア ジ ノ ン (mg/l)													
フェニトロチオン(MEP)(mg/l)													
イソプロチオラン (mg/l)													
オ キ シ ン 銅 (有 機 銅)(mg/l)													
要 クロロタロニル(TPN)(mg/l)													
監 プロピザミド (mg/l)													
項 ジ ク ロ ル ボ ス (DDVP)(mg/l)													
目 フェノブカルブ (BPMC)(mg/l)													
イ プ ロ ベ ン ホ ス (IBP)(mg/l)													
クロルニトロフェン (CNP)(mg/l)													
トルエン (mg/l)													
キ シ レ ン (mg/l)													
フタル 酸ジエチルヘキシル(mg/l)													
ニ ッ ケ ル (mg/l)													
モ リ ブ デ ン (mg/l)													
ア ン チ モ ン (mg/l)												<u> </u>	
塩 化 ビ ニ ル モ ノ マ ー (mg/l)												<u></u>	
エピクロロヒドリン (mg/l)													
全 マ ン ガ ン (mg/l)													
ウ ラ ン (mg/l)												L	
P F O S ※ 2(ng/l)													
P F O A ※ 3(ng/l)													
PFOS及びPFOA(ng/l)													
ア ン モ ニ ア 性 窒 素 (mg/l)	1.1	0.48	1.7	-/4	1.1	0.38	1.8	-/4	0.54	0.21	1.20	-/4	
硝 酸 性 窒 素 (mg/l)	0.95	0.60	1.40	-/4	0.86	0.67	1.10	-/4	0.50	0.23	0.61	-/4	
亜 硝 酸 性 窒 素 (mg/l)	0.11	80.0	0.13	-/4	0.12	0.06	0.19	-/4	0.05	0.03	0.09	-/4	
リン酸性リン (mg/l)	0.35	0.23	0.46	-/4	0.33	0.20	0.43	-/4	0.16	0.09	0.23	-/4	
の													
の F リハロメダン 生 成 能 (mg/l)													
項 2 - M I B (μ g/l)									-				
ジ オ ス ミ ン (μ mg/l)				,, -	,								
塩化物イオン(mg/l)	4100	420	9000	-/12	4300	640	9500	-/12	6900	1500	14000	-/12	
塩分濃度(‰)	11655	,,,,	05555	//	40000	0000	0.45==	/	10	4/			
電 気 伝 導 率 (μ S/cm)	11000	1500	25000	-/12	12000	2000	24000	-/12	18000	4400	34000	-/12	

(備考) ※1 x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 ※2ペルフルオロオクタンスルホン酸(PFOS) ※3ペルフルオロオクタン酸(PFOA)

2-24 河川における要監視項目の測定結果及び指針値

項	目名	フタル酸ジエ チルヘキシル	塩化ビニル モノマー	エピクロロ ヒドリン	ペルフルオロオクタン スルホン酸 (PFOS)	ペルフルオロオクタン スルホン酸 (PFOS)(直鎖体)	ペルフルオロオクタン 酸 (PF0A)	ペルフルオロオクタ ン酸 (PFOA) (直鎖体)	PFOS及び PFOAの 合算値
地点	指針値	0.006以下	0.0002以下	0. 00003以下	0.00005以下	0.00005以下	0.00005以下	0.00005以下	0.00005以下
橋本川	橋本	<0.0006	<0.0008	<0.0005	0.000018	0.0000008	0.0000038	0. 0000038	0.0000056
貴志川	諸井橋	<0.0006	<0.0008	<0.0005	<0.0000001	<0.0000001	0.0000008	0. 0000008	0.0000009
日方川	新湊橋	<0.0006	<0.0008	<0.0005	0. 0000026	0.0000012	0.0000012	0. 0000012	0.0000038
山田川(海南	海南大橋	<0.0006	<0.0008	<0.0005	0. 0000012	0.0000006	0.0000016	0. 0000016	0.0000028
有田川	保田井堰	<0.0006	<0.0008	<0.0005	0. 0000006	0.0000002	0. 000001	0.000001	0.0000017
日高川	船津堰堤	<0.0006	<0.0008	<0.0005	<0.0000001	<0.0000001	<0.0000002	<0.0000002	<0.0000003
口南川	若野橋	<0.0006	<0.0008	<0.0005	<0.0000001	<0.0000001	<0.0000002	<0.0000002	<0.0000003
南部川	南部大橋	<0.0006	<0.0008	<0.0005	0. 0000005	0. 0000002	0.0000011	0.0000007	0.0000017
古川	古川橋	<0.0006	<0.0008	<0.0005	0. 0000005	0.0000003	0.0000029	0. 0000018	0.0000034
左会津川	高雄大橋	<0.0006	<0.0008	<0.0005	0.0000007	0. 0000003	0.0000006	0. 0000006	0.0000014
左云律川	会津橋	<0.0006	<0.0008	<0.0005	0. 0000006	0.0000003	0. 0000005	0. 0000005	0.0000011
富田川	富田橋	<0.0006	<0.0008	<0.0005	0. 0000002	0.0000001	0.0000002	0. 0000002	0.0000005
日置川	安宅橋	<0.0006	<0.0008	<0.0005	<0.0000001	<0.0000001	<0.0000002	<0.0000002	<0.0000003
古座川	高瀬橋	<0.0006	<0.0008	<0.0005	<0.0000001	<0.0000001	<0.0000002	<0.0000002	<0.0000003
百座川	古座橋	<0.0006	<0.0008	<0.0005	<0.0000001	<0.0000001	<0.0000002	<0.0000002	<0.0000003
太田川	下里大橋	<0.0006	<0.0008	<0.0005	<0.0000001	<0.0000001	<0.0000002	<0.0000002	<0.0000003
二河川	二河橋	<0.0006	<0.0008	<0.0005	<0.0000001	<0.0000001	<0.0000002	<0.0000002	<0.0000003
那智川	市野々橋	<0.0006	<0.0008	<0.0005	<0.0000001	<0.0000001	<0.0000002	<0.0000002	<0.0000003
加省 川	川関橋	<0.0006	<0.0008	<0.0005	<0.0000001	<0.0000001	<0.0000002	<0.0000002	<0.0000003
熊野川	宮井橋	<0.0006	<0.0008	<0.0005	<0.0000001	<0.0000001	<0.0000002	<0.0000002	<0.0000003

水生生物の保全に係る項目

水生生物の	保全に係る事	頁目			(単位:mg/L)
	項目名		クロロホルム	フェノール	ホルム アルデヒド
		指針値 生物A	0.7 以下	0.05 以下	1 以下
地点・類	型	生物B	3 以下	0.08 以下	1 以下
橋本川	橋本	生物B	<0.001	<0.001	<0.008
貴志川	小川橋	生物A	<0.001	<0.001	<0.008
貝心川	諸井橋	生物B	<0.001	<0.001	<0.008
有田川	小峠橋	生物A	<0.001	<0.001	<0.008
/Я Ш/II 	保田井堰	生物B	<0.001	<0.001	<0.008
日高川	菅橋	生物A	<0.001	<0.001	<0.008
日 同 / 川	若野橋	生物B	<0.001	<0.001	<0.008
南部川	南部大橋	生物B	<0.001	<0.001	<0.008
左会津川	会津橋	生物B	<0.001	<0.001	<0.008
富田川	滝尻橋	生物A	<0.001	<0.001	<0.008
角川川	富田橋	生物B	<0.001	<0.001	<0.008
日置川	春日橋	生物A	<0.001	<0.001	<0.008
H	安宅橋	生物B	<0.001	<0.001	<0.008
古座川	高瀬橋	生物A	<0.001	<0.001	<0.008
	古座橋	生物B	<0.001	<0.001	<0.008
太田川	下里大橋	生物B	<0.001	<0.001	<0.008
二河川	二河橋	生物B	<0.001	<0.001	<0.008
那智川	川関橋	生物B	<0.001	<0.001	<0.008
熊野川	宮井橋	生物A	<0.001	<0.001	<0.008

2-25 海域の水域・項目別測定回数一覧

_ 0	1四级47八级 京		1/1//	—1 <i>2</i> /^	元											
		水軒川海域	≉ 日 泊 址	吹 山 毎	海南海域				下津初島海域		湯浅海域			由良海域		
		表層	表層	下層	表層	中層	下層	表層	中層	下層	表層	中層	下層	表層	中層	下層
	рН	36	192		30	18		36	30		30	18		18	12	
	DO	36	192	180	30	18	18	36	30	24	30	18	18	18	12	12
	BOD															
生	COD	36	192		30	18		36	30		30	18		18	12	
活	SS	36	192		30	18		36	30		30	18		18	12	
環	大腸菌数		•		30	18		36	30		30	18		18	12	
境項	n-^キサン抽出物質	18	96		30			36			30			18		
目	全窒素	36	192		30	18		36	30		30	18		18	12	
	全燐	36	192		30	18		36	30		30	18		18	12	
	全亜鉛	12	64		18			30			18			12		
	直鎖アルキルベンゼンスルホン酸及びその塩	1	9											*************		
	カト゛ミウム	12	64		6			10			6			4		
	全シアン	12	64		6			10			6	·		4		
	鉛	12	64		6			10			6			4		
	六価クロム	12	64		6			10			6			4		
	砒素	18	96		6			10			6			4		
	総水銀	12	64		6			10			6			4		
	アルキル水銀															
	PCB	2	18		6			10			6			4		
	シ゛クロロメタン	2	18		6			10			6			4		
	四塩化炭素	2	18		6			10			6			4		
	1, 2-ジクロロエタン	2	18		6			10			6			4		
	1, 1-ジクロロエチレン	2	18		6			10			6			4		
健康	シス-1, 2-ジクロロエチレン	2	18		6			10			6			4		
項	1, 1, 1ートリクロロエタン	2	18		6			10			6			4		
目	1, 1, 2-トリクロロエタン	2	18		6			10			6			4	***************************************	
	トリクロロエチレン	2	18		6			10			6			4		
	テトラクロロエチレン	2	18		6			10			6			4		
	1, 3-ジクロロプロペン	2	18		6			10			6			4		
	チウラム	2	18		6			10			6			4	***************************************	
	シマシ゛ン	2	18		6			10			6			4		
	チオヘ゛ンカルフ゛	2	18		6			10			6			4		
	ベンゼン	2	18		6			10			6			4		
	セレン	2	18		6			10	ļ		6	ļ		4		
	硝酸性窒素及び亜硝酸性窒素	2	18		6			10			6			4		
	ふっ素											ļ				
	ほう素															
<u> </u>	1,4-ジオキサン	2	18		6			10			6			4		
特	添好性外	12	64		***************************************							ļ		***************************************	***************************************	
殊項	溶解性鉄 溶解性マンガン															
目	クロム	12	G A								•••••			***************************************		
-	EPN	14	64													
	7 : 1 - N	4	36		6			10			6			4	***************************************	
	クロロホルム	4			6			10			6			4		
	ホルムアルテ [*] ヒト [*]				6			10			6			4		
	アンモニア性窒素	18	96		· ·			10						T T		
その	硝酸性窒素	2	18		6			10			6			4	***************************************	
他	一 明 政 任 至 系 一 亜 硝 酸 性 窒 素	2	18		6			10	 		6			4		
0	リン酸性リン	18	96		30			36			18			12	L	
項	濁度	10	<i>5</i> 0		- 00			- 00			10			14		
目	トリハロメタン生成能 2-MIB															
	ジオスミン											ļ				
	塩化物イオン	18	96		30	18		36	30		30	18		18	12	
	塩分濃度 電気伝導率				30			36			30			18		
	測定機関	7	和歌山市	Ħ		ž.			b .	和歌	山県	8				
	* *															

			日高海域			田辺海域		すさみ海域		串本海域			勝浦海域			三輪崎海域	
		表層	中層	下層	表層	中層	下層	表層	表層	中層	下層	表層	中層	下層	表層	中層	下層
	рΗ	24	12		36	24		12	42	12		24	12		18	18	
	DO	24	12	12	36	24	24	12	42	12	6	24	12	12	18	18	12
	BOD																
生	COD	24	12		36	24		12	42	12		24	12		18	18	
活	SS	24	12		36	24		12	42	12		24	12		18	18	
環	大腸菌数	24	12		36	24	-	12	42	12		24	12		18	18	
境項	n-ヘキサン抽出物質	24			36			12	42			24			18		
日目	全窒素	24	12		36	24	<u> </u>	12	42	12		24	12		18	18	
	全燐	24	12		36	24		12	42	12		24	12		18	18	
	全亜鉛	12			24			12	30			12	12		18	10	
	直鎖アルキルベンゼンスルホン酸及びその塩	12			21			12				12			10		
	カト゛ミウム	4			8		-	4	10			4			6		
	<u> </u>	4			8			4	10			4			6		
	 鉛	4			8			4	10			4			6		
							-	4									
		4			8				10			4			6		
	砒素	4			8			4	10			4			6		
	総水銀	4			8			4	10			4			6		
	アルキル水銀																
	PCB	4			8			4	10			4			6		
	ジ゛クロロメタン	4			8			4	10			4			6		
	四塩化炭素	4			8			4	10			4			6		
	1, 2-ジクロロエタン	4			8			4	10			4			6		
fe-to.	1, 1-ジクロロエチレン	4			8			4	10			4			6		
健康	シスー1, 2ーシ゛クロロエチレン	4			8			4	10			4			6		
康項	1, 1, 1ートリクロロエタン	4			8			4	10			4			6		
Î	1, 1, 2-トリクロロエタン	4			8			4	10			4			6		
	トリクロロエチレン	4			8			4	10			4			6		
	テトラクロロエチレン	4			8			4	10			4			6		
	1, 3-ジクロロプロペン	4			8			4	10			4			6		
	チウラム	4			8			4	10			4			6		
	シマシ゛ン	4			8			4	10			4			6		
	チオヘ゛ンカルフ゛	4			8	***************************************		4	10			4			6		
	へ゛ンセ゛ン	4			8			4	10		·	4			6		
	セレン	4			8	***************************************		4	10			4			6		
	硝酸性窒素及び亜硝酸性窒素	4			8			4	10			4			6		
	ふっ素					***************************************											
	ほう素							**********							*******		
	1, 4-ジオキサン	4			8	************		4	10			4			6		
d-t-	銅							<u> </u>							É		
特殊	溶解性鉄					***************************************		**************	***********						************		
項	溶解性マンガン								***********								
目	7rA								*************			************					
	EPN						-										
	フェノール	1			8			1	10			лл			6		
	クロロホルム	4			8			4	10 10		ļ	4			6		
	ホルムアルテ゛ヒト゛														***************************************		
		4			8		-	4	10			4			6		
そ	アンモニア性窒素								1.0								
(J)	硝酸性窒素	4			8			4	10		ļ	4			6		
他の	亜硝酸性窒素	4			8		}	4	10			4			6		
項	リン酸性リン	12			24		-		12			12			18		
目	濁度 トリハロメタン生成能							***************************************									
	トリハロメタン生成能 2-MIB																
	ジオスミン																
	塩化物イオン	24	12		36	24		12	42	12		24	12		18	18	
	塩分濃度	24			36			12	42			24			18		
	電気伝導率																
	測定機関								和歌	山県							

2-26 海域のCODの水域別環境基準達成状況一覧

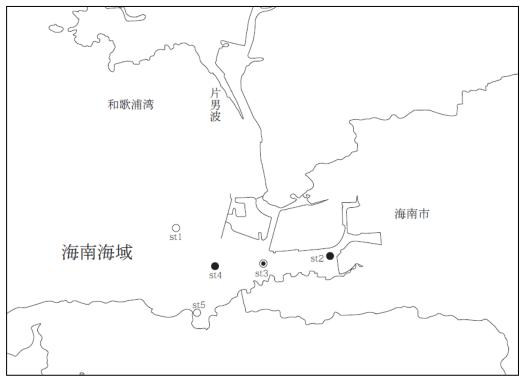
環境基準類型						基準を満足して	ていない地点数	[
	類型	指定 年度	環境基準地 点数	基準を満足 する地点数	合 計	x/y=	100%>x/y	50%>x/y	達成 状況
類型指定水域名					П ні	100%	≧50%	>25%	
和 歌 山 下 津 港 (海 南 港 区)	В	1972	1	1	0	0	0	0	0
和 歌 山 下 津 港 (下 津 港 区)	В	1972	1	1	0	0	0	0	0
和 歌 山 下 津 港 (有 田 港 区)	В	1972	1	1	0	0	0	0	0
和歌山下津港(初島漁港区)	В	1972	1	1	0	0	0	0	0
和歌山下津港	A	1972	4	4	0	0	0	0	0
(その他の区域)	A	1972	3	3	0	0	0	0	
三輪崎地先海域(甲)	В	1973	1	1	0	0	0	0	0
三輪崎地先海域(乙)	В	1973	1	1	0	0	0	0	0
三輪崎地先海域(その他の区域)	A	1973	1	1	0	0	0	0	0
有田川の河口	A	1974	1	1	0	0	0	0	0
湯 浅 湾 及 び 由 良 湾 海 域	A	1974	5	5	0	0	0	0	0
文 里 港 区	В	1975	1	1	0	0	0	0	0
田辺漁港区	В	1975	1	1	0	0	0	0	0
田 辺 湾 海 域	A	1975	2	2	0	0	0	0	0
勝浦港区	В	1977	1	1	0	0	0	0	0
勝浦湾海域	A	1977	1	1	0	0	0	0	0
串本地先海域	A	1977	2	2	0	0	0	0	0
日 高 海 域	A	1984	2	2	0	0	0	0	0
和歌山下津港※(北港区)	В	1972	1	1	0	0	0	0	0
和歌山下津港※(本港区)		1972	1	1	0	0	0	0	0
和歌山下津港※(南港区)	В	1972	2	2	0	0	0	0	0
築地川及び※水軒川	С	1974	1	1	0	0	0	0	0
和歌川の河口※		1974	1	1	0	0	0	0	0
計	22	_	36	36	0	0	0	0	○22 ×0

- (備考) 1 環境基準類型とは、自然環境保全、水産1級、2級、環境保全の水の利用目的の適応性を 考慮し、維持されることが望ましい水質をAからCまでの3つに類型分けしたものである。
 - 2 x:環境基準に適合しない日数 y:総測定日数
 - 3 基準を満足するとは、x/y≤25%であることをいう。
 - 4 ※は和歌山市調査

2-27 海域の窒素・燐の水域別環境基準達成状況一覧

					全	窒 素			É	全 燐	
類型指定水域名	類 型	指定年度	環境基準点	表層の年 (mg		環境基準 (mg/l)	達成状況	表層の年 (mg/		環境基準 (mg/l)	達成状況
紀伊水道東部海域 (イ) (和歌山市の地先海域)	海域Ⅲ	1997	和歌山海域St.8	0. 3	30	0.6以下	0	0.0	25	0.05以下	0
紀伊水道東部海域 (ロ) (海南市の地先海域)	海域Ⅲ	1997	海南海域St.3	0. 2	24	0.6以下	0	0.0	28	0.05以下	0
紀伊水道東部海域 (ハ) (有田市及び下津町の地先海域)	海域Ⅲ	1997	下津初島海域St.2	0. 1	18	0.6以下	0	0.0	21	0.05以下	0
			和歌山海域St.16	0. 19				0.019			
紀伊水道東部海域 (ニ) (上記以外の地先海域)	海域Ⅱ	1997	湯浅海域St.6	0. 16	0.16	0.3以下	0	0.019	0.018	0.03以下	0
			由良海域St.6	0. 13				0.018			
TT 7#	海採用	1000	田辺海域St.4	0.14	0 14	0.2017		0.016	0.016	0.02017	
田 辺 偽	田 辺 湾 海域 II 1998 田辺海域St. 7	田辺海域St. 7	0. 13	0.14	0. 3以下	0	0.015	0.016	0.03以下	0	

[※]当該水域内の各基準点における表層の年間平均値を当該水域内の全ての基準点において平均した値


2-28 海南海域水質測定結果

①のとおり5測定点で年6回(3測定点で、中層年6回を含む。)の測定を実施した。その結果は、③のとおりである。

この海域は、環境基準類型 (海域アの部) は、海南港区 (St. 2) にB、その他の海域 (St. 1, 3, 4, 5) にAをあてはめている。

海域アの水質汚濁指標であるCODの 75%値でみると、全ての環境基準点で基準値($A:2\ mg/1$ 、 $B:3\ mg/1$)に適合している。

① 海南海域測定点図

- ●C O D 等の環境基準点 ☆T -N、T -P の環境基準点
- ●COD等かつT-N、T-Pの環境基準点 ○その他の観測点

② 海南海域のCOD75%値の推移

③ 海南海域水質測定結果一覧

	海 域 名						海南	海域					
	地 点 名	·	St. 1 (A【*	甫】,Ⅱ【補】)	St.	2(表層)(日	3【基】,Ⅲ【ネ	補】)	St.	2(中層)(I	B【基】,皿【*	補】)
	測定值測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		8.1	8.2	0/6		7.9	8.2	0/6		8.0	8.2	0/6
生	D O (mg/l)	8.6	7.5	9.8	0/6	7.6	5.1	9.7	0/6	8.2	6.2	9.8	0/6
		(1.3)				(2.3)				(<0.5)			
活	C O D (mg/l)	1.4	1.1	2.5	1/6	1.9	1.3	2.9	0/6	1.8	1.5	2.2	0/6
環	S S (mg/l)	3.3	1.0	9.0	-/6	5	4	6	-/6	5	2	11	-/6
境	大 腸 菌 数 (CFU/100ml)	47	0	280	0/6	274	6	1200	6/6	21	3	86	6/6
項	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	0/6			<0.5	0/6				
l	全窒素(mg/l)	0.22	0.13	0.59	1/6	0.42	0.17	0.95	2/6	0.26	0.18	0.33	0/6
_	全 燐 (mg/l)	0.029	0.016	0.074	0/6	0.055	0.020	0.140	0/6	0.027	0.018	0.034	0/6
	全 亜 鉛 (mg/l)					0.003	0.001	0.005	-/6	1		8	
	カト * ミウム (mg/l)							<0.0003	0/2		<u> </u>		
	全 シ ア ン (mg/l)							<0.1	0/2				
	鉛 (mg/l)							<0.005	0/2				
	六 価 ク ロ ム (mg/l)					0.003	0.001	<0.01	0/2				
	砒 素 (mg/l)					0.001	0.001	0.001	0/2				
	総 水 銀 (mg/l) アルキル水 銀 (mg/l)							<0.0005	0/2				
	アルキル水 銀 (mg/l) P C B (mg/l)							<0.0005	0/2			800	
健	シ * ク ロ ロ メ タ ン (mg/l)							<0.0003	0/2				
	四塩化炭素(mg/l)							<0.002	0/2				
	1,2- シ カロロエタン (mg/l)							<0.0002	0/2				
康	1,1- シ クロロエチレン (mg/l)							<0.002	0/2				
	シス -1,2- シ * クロロエチレン (mg/l)							<0.004	0/2				
	1,1,1- トリクロロエタン (mg/l)							<0.01	0/2				
項	1,1,2- トリクロロエタン (mg/l)							<0.0006	0/2				
	トリクロロエチレン (mg/l)							<0.001	0/2				
	テトラクロロエチレン (mg/l)							<0.001	0/2				
目	1,3- シ ^ クロロフ ゜ロヘ゜ン (mg/l)							<0.0002	0/2				
	チ ウ ラ ム (mg/l)							<0.0006	0/2				
	シ マ シ ゜ ン (mg/l)							<0.0003	0/2			000000000000000000000000000000000000000	
	チオへ゛ンカルフ゛(mg/l)							<0.002	0/2			00000000	
	へ ・ ン セ ・ ン (mg/l)							<0.001	0/2				
	セ レ ン (mg/l)							<0.001	0/2				
	硝酸性窒素及び亜硝酸性窒素(mg/l)					0.06	0.04	0.07	0/2		<u> </u>		
_	1,4- シ * オ キ サ ン (mg/l)							<0.005	0/2				
特	銅 (mg/l)												
殊	鉄 (溶 解 性) (mg/l)										ļ		
項目	マンカ゛ン(溶解性)(mg/l)												
	7 Π Δ (mg/l)												
	E P N (mg/l)							(0.55)					
	フェノール (mg/l)							<0.001	-/2				
	クロロホルム (mg/l)							<0.001	-/2				
その	ホルムアルデヒド (mg/l)							<0.008	-/2				
他	アンモニア性窒素 (mg/l) 硝酸性窒素 (mg/l)					0.05	0.03	0.06	-/2				
の項						0.00	0.03	<0.01	-/2 -/2				
Ē	型 明 酸 性 単 糸 (mg/l)	0.02	<0.01	0.04	-/6	0.03	0.01	0.01	-/2 -/6				
		3.02	\U.U.I	3.04	, 3	5.00	3.01	3.03	, J				
	塩 化 物 イ オ ン (mg/l)	17333	14000	18000	-/6	15833	12000	18000	-/6	17500	17000	18000	-/6
	塩分濃度(‰)	32	25	34	-/6	29	23	33	-/6		1.000		, 3
										I	1	R	

	海 域 名						海南	海域					
	地 点 名	St.	2(下層)(B【基】, Ⅲ【	[補])	St.	2(全層)(B【基】, Ⅲ【	[補])	St.	3(表層)(/	A【基】, 皿【ā	基])
	測定值測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н			8.2			7.9	8.2	0/12		8.0	8.2	0/6
生	D O (mg/l)	7.9	6.3	10	0/6	7.9	5.1	10	0/18	8.3	6.6	10	1/6
						(2.3)				(1.6)			
活	C O D (mg/l)					1.8	1.3	2.9	0/6	1.4	0.7	2.0	0/6
環	S S (mg/l)					5	2	11	-/12	5	3	11	-/6
境	大 腸 菌 数 (CFU/100ml)					147	3	1200	12/12	22	1	70	0/6
項	N - へ キ サ ン 抽 出 物 質 (mg/l)							<0.5	0/6			<0.5	0/6
	全 窒 素 (mg/l)					0.34	0.17	0.95	2/12	0.24	0.11	0.40	0/6
-	全 燐 (mg/l)					0.041	0.018	0.140	0/12	0.028	0.016	0.045	0/6
	全 亜 鉛 (mg/l)									0.004	.0.001	0.011	-/6
	カ ト * ミ ウ ム (mg/l)							<0.0003	0/2			<0.0003	0/2
	全 シ ア ン (mg/l)							<0.1	0/2			<0.1	0/2
	鉛 (mg/l)							<0.005	0/2			<0.005	0/2
	六 価 ク ロ ム (mg/l)							<0.01	0/2			<0.01	0/2
	砒 素 (mg/l)					0.001	0.001	0.001	0/2	0.001	0.001	0.001	0/2
	総 水 銀 (mg/l)							<0.0005	0/2			<0.0005	0/2
	アルキル水銀(mg/l)												
健	P C B (mg/l)							<0.0005	0/2			<0.0005	0/2
	シ [*] ク ロ ロ メ タ ン (mg/l)							<0.002	0/2			<0.002	0/2
	四 塩 化 炭 素(mg/l)							<0.0002	0/2			<0.0002	0/2
康	1,2- シ * ク ロ ロ エ タ ン (mg/l)							<0.0004	0/2			<0.0004	0/2
	1,1- シ * クロロエチレン (mg/l)							<0.002	0/2			<0.002	0/2
	シス -1,2- シ゛クロロエチレン (mg/l)							<0.004	0/2			<0.004	0/2
項	1,1,1- ト リ ク ロ ロ エ タ ン (mg/l)							<0.01	0/2			<0.01	0/2
	1,1,2- トリクロロエタン (mg/l)							<0.0006	0/2			<0.0006	0/2
	トリクロロエチレン (mg/l)							<0.001	0/2			<0.001	0/2
	テトラクロロエチレン (mg/l)							<0.001	0/2			<0.001	0/2
	1,3- シ							<0.0002	0/2			<0.0002	0/2
	チ ウ ラ ム (mg/l)							<0.0006	0/2			<0.0006	0/2
	シマ シ ・ ン (mg/l)							<0.0003	0/2			<0.0003	0/2
	チオヘ゜ンカルフ゜(mg/l)							<0.002	0/2			<0.002	0/2
	へ ・ ン セ ・ ン (mg/l)							<0.001	0/2			<0.001	0/2
	セ レ ン (mg/l)					0.00	001	<0.001	0/2	0.005	0.07	<0.001	0/2
	硝酸性窒素及び亜硝酸性窒素(mg/l)					0.06	0.04	0.07	0/2	0.095	0.07	0.12	0/2
-	1,4- シ * オ キ サ ン (mg/l)							<0.005	0/2			<0.005	0/2
特	銅 (mg/l) 鉄 (※ 超 () (~~ ()												
殊項	鉄 (溶解性) (mg/l)												
E	マンカ゛ン (溶解性) (mg/l) クロ ム (mg/l)												
-													
								<0.001	-/2			<0.001	-/2
	クロロホルム (mg/l)							<0.001	-/2 -/2			<0.001	-/2 -/2
その	ホルムアルデヒド (mg/l) マンエ・マ性 突 麦 (mg/l)							<0.008	-/2			<0.008	-/ Z
他	アンモニア性窒素 (mg/l) 磁 酸 性 容 表 (mg/l)					0.05	0.03	0.06	-/2	0.09	0.06	011	_/2
の項	硝酸性窒素 (mg/l) 亜硝酸性窒素 (mg/l)					0.00	0.03	<0.01	-/2 -/2	0.09	0.00	0.11 <0.01	-/2 -/2
目	型 明 酸 性 至 系 (mg/l) リ ン 酸 性 リ ン (mg/l)					0.03	0.01	0.01	-/2 -/6	0.01	<0.01	0.01	-/2 -/6
						0.03	0.01	0.09	-/ o	0.01	\U.U1	0.02	-/0
	置度 (mg/l)					16667	12000	10000	_ /10	17107	16000	10000	_/0
	塩 化 物 イ オ ン (mg/l) 塩 ム 準 度 (%。)					16667	12000	18000	-/12 -/6	17167	16000	18000	-/6 -/6
	塩 分 濃 度 (‰)			1	(1))=	29	23	33	-/6	32	30	34	-/6

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

							海南	海 域					
1	地 点 名	St.	3(中層)(4【基】,皿【	基】)	St.	3(下層)(4【基】, Ⅲ【:	基])	St.	3(全層)(A【基】, 皿【a	基】)
	測定值	平均	最小値	最大値	х/у	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		8.0	8.2	0/6			8.2			8.0	8.2	0/12
生	D O (mg/l)	8.5	6.9	10	1/6	7.9	6.3	10	3/6	8.2	6.3	10	5/18
		(<0.5)								(1.7)			
活	C O D (mg/l)	1.5	1.2	1.8	0/6					1.5	0.7	2.0	0/6
環	S S (mg/l)	4	1	9	-/6					4	1	11	-/12
境	大 腸 菌 数 (CFU/100ml)	5	0	17	0/6					14	0	70	0/12
項	N - へ キ サ ン 抽 出 物 質 (mg/l)											<0.5	0/6
	全 窒 素 (mg/l)	0.20	0.16	0.24	0/6					0.22	0.11	0.40	0/12
目	全 燐 (mg/l)	0.020	0.009	0.030	0/6					0.024	0.009	0.045	0/12
	全 亜 鉛 (mg/l)												
	カ ト ˙ ミ ウ ム (mg/l)											<0.0003	0/2
	全 シ ア ン (mg/l)											<0.1	0/2
	鉛 (mg/l)											<0.005	0/2
	六 価 ク ロ ム (mg/l)											<0.01	0/2
	砒 素 (mg/l)									0.001	0.001	0.001	0/2
	総 水 銀 (mg/l)											<0.0005	0/2
	アルキル水銀 (mg/l)												
健	P C B (mg/l)											<0.0005	0/2
	シ [*] ク ロ ロ メ タ ン (mg/l)											<0.002	0/2
	四塩化炭素(mg/l)											<0.0002	0/2
康	1,2- シ											<0.0004	0/2
	1,1- シ゛クロロェチレン (mg/l)											<0.002	0/2
	シス −1,2− シ゛クロロエチレン (mg/l)											<0.004	0/2
項	1,1,1- ト リ ク ロ ロ エ タ ン (mg/l)											<0.01	0/2
	1,1,2- トリクロロエタン (mg/l)											<0.0006	0/2
	トリクロロエチレン (mg/l)											<0.001	0/2
B	テトラクロロエチレン (mg/l)											<0.001	0/2
	1,3- シ * クロロフ [°] ロ へ [°] ン (mg/l)											<0.0002	0/2
	チ ウ ラ ム (mg/l) シ マ シ ・ ン (mg/l)											<0.0006	0/2
	シマシ゛ン (mg/l) チオヘ゛ンカルフ゛(mg/l)											<0.0003	0/2
	ナ ¼ へ											<0.002	0/2
	セ レ ン (mg/l)							-				<0.001	0/2
	イロップ									0.10	0.07	0.12	0/2
-	1,4- シ * オ キ サ ン (mg/l)									0.10	0.07	<0.005	0/2
H	銅 (mg/l)											.5.550	
特殊	鉄 (溶 解 性) (mg/l)												
項	マンカ゛ン(溶解性)(mg/l)												
目	7 П Д (mg/l)												
H	E P N (mg/l)												
	フェノール (mg/l)											<0.001	-/2
	クロロホルム (mg/l)											<0.001	-/2
	ホルムアルデヒド (mg/l)											<0.008	-/2
その	ア ン モ ニ ア 性 窒 素 (mg/l)												
他の	硝 酸 性 窒 素 (mg/l)									0.09	0.06	0.11	-/2
項	亜 硝 酸 性 窒 素 (mg/l)											<0.01	-/2
目	リン酸性リン (mg/l)									0.01	<0.01	0.02	-/6
	濁 度 (mg/l)												
	塩 化 物 イ オ ン (mg/l)	18000	18000	18000	-/6					17583	16000	18000	-/12
	塩 分 濃 度 (‰)									32	30	34	-/6

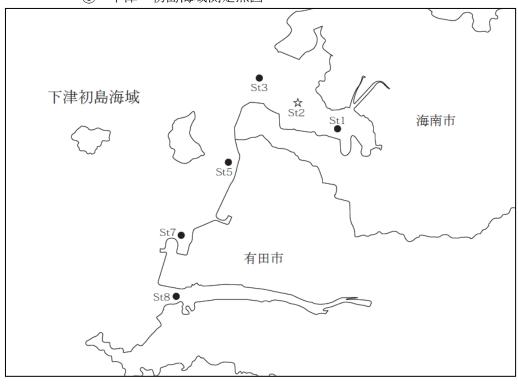
(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名						海南	海域					
	地 点 名	St.	4(表層)(/	4【基】, Ⅱ【	補】)	St.	4(中層)(4【基】, Ⅱ【	補】)	St.	4(下層)(/	A【基】, II【ネ	甫】)
	測定值測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		8.1	8.3	0/6		8.1	8.3	0/6			8.3	
生	D O (mg/l)	8.7	7.7	10	0/6	8.6	7.5	10	0/6	8.4	6.5	10	1/6
		(1.4)				(<0.5)							
活	C O D (mg/l)	1.4	1.3	1.8	0/6	1.5	1.1	2.0	0/6				
環	S S (mg/l)	4	2	6	-/6	4	1	12	-/6				
境	大 腸 菌 数 (CFU/100ml)	4	0	10	0/6	1	0	3	0/6				
項	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	0/6								
目	全 窒 素 (mg/l)	0.17	0.14	0.23	0/6	0.18	0.14	0.21	0/6				
"	全 燐 (mg/l)	0.021	0.015	0.026	0/6	0.017	0.010	0.024	0/6				
	全 亜 鉛 (mg/l)	0.002	<0.001	0.003	-/6								
	カ ト ゜ ミ ウ ム (mg/l)			<0.0003	0/2								
	全 シ ァ ン (mg/l)			<0.1	0/2								
	鉛 (mg/l)			<0.005	0/2						<u> </u>		
	六 価 ク ロ ム (mg/l)			<0.01	0/2								
	砒 素 (mg/l)	0.001	0.001	0.001	0/2								
	総 水 銀 (mg/l)			<0.0005	0/2								
	ア ル キ ル 水 銀 (mg/l)			40.7.7									
健	P C B (mg/l)			<0.0005	0/2								
	シ * ク ロ ロ メ タ ン (mg/l)			<0.002	0/2						ļ		
	四塩化炭素(mg/l)			<0.0002	0/2						ļ		
康	1,2- シ * ク ロ ロ エ タ ン (mg/l)			<0.0004	0/2						-		
	1,1- シ * クロロエチレン (mg/l)			<0.002	0/2						-		
	シス -1,2- シ゛クロロエチレン (mg/l)			<0.004	0/2								
項	1,1,1- ト リ ク ロ ロ エ タ ン (mg/l)			<0.01	0/2 0/2						<u> </u>		
	1,1,2- トリクロロエタン (mg/l) トリクロロエチレン (mg/l)			<0.0006 <0.001	0/2								
	ト リ ク ロ ロ エ チ レ ン (mg/l) テトラ ク ロ ロ エ チ レ ン (mg/l)			<0.001	0/2						<u> </u>		
目	1,3- シ クロロフ ゚ロヘ ゚ン (mg/l)			<0.001	0/2								
	チ ウ ラ ム (mg/l)			<0.0002	0/2								
	シマシ・ン (mg/l)			<0.0003	0/2								
	チオヘ゛ンカルフ゛(mg/l)			<0.002	0/2								
	へ * ン セ * ン (mg/l)			<0.001	0/2								
	セ レ ン (mg/l)			<0.001	0/2								
	研酸性窒素及び亜硝酸性窒素(mg/l)	0.045	<0.02	0.07	0/2								
-	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/2								
	銅 (mg/l)												
特殊	鉄 (溶 解 性) (mg/l)												
項	マンカ [*] ン(溶解性) (mg/l)												
目	7 □ ᠘ (mg/l)												
	E P N (mg/l)												
	フェノ — ル (mg/l)			<0.001	-/2								
	クロロホルム (mg/l)			<0.001	-/2								
そ	ホルムアルデヒド (mg/l)			<0.008	-/2								
の	ア ン モ ニ ア 性 窒 素 (mg/l)												
他の	硝 酸 性 窒 素 (mg/l)	0.04	<0.01	0.07	-/2								
項	亜 硝 酸 性 窒 素 (mg/l)			<0.01	-/2								
目	リン酸性リン (mg/l)	0.01	<0.01	0.01	-/6								
	濁 度 (mg/l)												
	塩 化 物 イ オ ン (mg/l)	17667	17000	18000	-/6	18000	18000	18000	-/6				
	塩 分 濃 度 (‰)	33	31	33	-/6								
	(備者) マ・環境基準に	노 ^ >	λ	· · · · · · · · · · · · · · · · · · ·		1 스	1.	/ \	L.). 1. 7.	0/1	•		

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

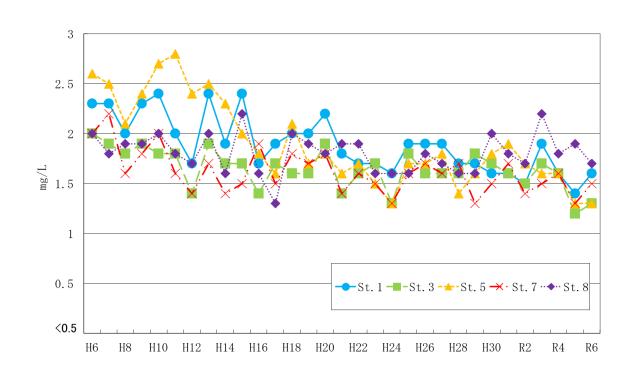
	海 域 名				海南	海域			
	地 点 名	St.	4(全層)(A【基】, Ⅱ【 ²	補】)		St. 5 (A[*	甫】,Ⅱ【補】)
	測定値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	p H		8.1	8.3	0/12		8.1	8.3	0/6
_	D O (mg/l)	8.6	6.5	10	1/18	8.7	7.7	9.8	0/6
生		(1.7)				(1.6)			
活	C O D (mg/l)	1.5	1.1	2.0	0/6	1.5	1.2	1.8	0/6
環	S S (mg/l)	4	1	12	-/12	4	2	7	-/6
境	大 腸 菌 数 (CFU/100ml)	2	0	10	0/12	1	0	5	0/6
項	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	0/6			<0.5	0/6
	全 窒 素 (mg/l)	0.17	0.14	0.23	0/12	0.16	0.13	0.19	0/6
目	全 燐 (mg/l)	0.019	0.010	0.026	0/12	0.021	0.015	0.027	0/6
	全 亜 鉛 (mg/l)								
	カ ト * ミ ウ ム (mg/l)			<0.0003	0/2				
	全 シ ア ン (mg/l)			<0.1	0/2				
	鉛 (mg/l)			<0.005	0/2				
	六 価 ク ロ ム (mg/l)			<0.01	0/2				
	砒 素 (mg/l)	0.001	0.001	0.001	0/2				
	総 水 銀 (mg/l)			<0.0005	0/2				
	ア ル キ ル 水 銀 (mg/l)								
健	P C B (mg/l)			<0.0005	0/2				
	シ [*] ク ロ ロ メ タ ン (mg/l)			<0.002	0/2				
	四 塩 化 炭 素 (mg/l)			<0.0002	0/2				
康	1,2- シ [*] クロロエタン (mg/l)			<0.0004	0/2				
	1,1- シ [*] クロロエチレン (mg/l)			<0.002	0/2				
	シス -1,2- シ゛クロロエチレン (mg/l)			<0.004	0/2				
項	1,1,1- トリクロロエタン (mg/l)			<0.01	0/2				
	1,1,2- トリクロロエタン (mg/l)			<0.0006	0/2				
	トリクロロエチレン (mg/l)			<0.001	0/2				
B	テトラクロロエチレン (mg/l)			<0.001	0/2				
	1,3- シ゛クロロフ゜ロヘ゜ン (mg/l)			<0.0002	0/2				
	チ ウ ラ ム (mg/l)			<0.0006	0/2				
	シ マ シ ・ ン (mg/l)			<0.0003	0/2				
	チオヘ゜ンカルフ゜(mg/l)			<0.002	0/2				
	へ * ン セ * ン (mg/l)			<0.001	0/2				
	セ レ ン (mg/l)			<0.001	0/2				
	硝酸性窒素及び亜硝酸性窒素(mg/l)	0.045	<0.02	0.07	0/2				
	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/2				
特	銅 (mg/l)								
殊項	鉄 (溶解性) (mg/l)								
目	マンカ゛ン (溶解性) (mg/l)								
	ク								
				∠n nn₁	-/2				
				<0.001	-/2 -/2				
				<0.001	-/2 -/2				
その				\0.008	-/ Z				
他		0.04	<0.01	0.07	-/2				
の項	硝酸性窒素(mg/l) 亜硝酸性窒素(mg/l)	0.04	\0.01	<0.01	-/2 -/2				
目	里 明 版 性 至 系 (mg/l) リン 酸 性 リン (mg/l)	0.01	<0.01	0.01	-/2 -/6	0.01	<0.01	0.01	-/6
	リフ酸性リフ (mg/l) 濁 度 (mg/l)	0.01	\0.01	0.01	/ 0	0.01	\0.01	0.01	70
	海 及 (mg/l) 塩 化 物 イ オ ン (mg/l)	17833	17000	18000	-/12	17667	17000	18000	-/6
	塩 分 濃 度 (‰)	33	31	33	-/ 12 -/6	33	32	34	-/6
\Box	塩 ガ 脹 度 (%) / (共 大) r平 (立 せ ※) テン		31			33	}	34	-/0

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。


2-29 下津·初島海域水質測定結果

①のとおり6測定点で年6回(5測定点で、中層年6回を含む。)の測定を実施した。その結果は、 ③のとおりである。

この海域は、環境基準類型 (海域アの部) は、下津港区 (St. 1, 2)、有田港区泊地 (St. 5) 及び初島 漁港区 (St. 7) にB、有田川河口部 (St. 8) 及びその他の区域 (St. 3) には、Aをあてはめている。


CODの75%値でみると、全ての環境基準点で基準値(A:2 mg/1、B:3 mg/1)に適合している。

① 下津·初島海域測定点図

- ●COD等の環境基準点 ☆T-N、T-Pの環境基準点
- ●COD等かつT-N、T-Pの環境基準点 ○その他の観測点

② 下津・初島海域のCOD75%値の推移

③ 下津·初島海域水質測定結果一覧

	海 域 名						下津初	島海域					
	地点名	St.	1(表層) (3【基】,皿【2	補】)			3【基】,皿【名		St.	1(下層) (E	3【基】,皿【2	補】)
	測 定 値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	<u>測 定 項 目</u>		8.1	8.3	0/6		8.1	8.3	0/6			8.3	.,
	D O (mg/l)	8.6	7.3	10	0/6	8.7	7.4	10	0/6	8.3	7.1	10	0/6
生		(1.5)				(<0.5)							
活	C O D (mg/l)	1.5	1.1	2.4	0/6	1.5	1.2	1.7	0/6				
環	S S (mg/l)	4	1	8	-/6	3	2	4	-/6				
境	大 腸 菌 数 (CFU/100ml)	11	0	44	4/6	7	0	37	4/6				
項	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	0/6								
	全 窒 素 (mg/l)	0.47	0.12	1.50	1/6	0.20	0.14	0.25	0/6				
目	全 燐 (mg/l)	0.030	0.013	0.051	0/6	0.017	0.006	0.030	0/6				
	全 亜 鉛 (mg/l)	0.002	0.001	0.003	-/6								
	カ ト ゜ ミ ウ ム (mg/l)			<0.0003	0/2								
	全 シ ア ン (mg/l)			<0.1	0/2								
	鉛 (mg/l)			<0.005	0/2								
	六 価 ク ロ ム (mg/l)			<0.01	0/2								
	砒 素 (mg/l)	0.001	0.001	0.001	0/2								
	総 水 銀 (mg/l)			<0.0005	0/2								
	アルキル水 銀 (mg/l)												
健	P C B (mg/l)			<0.0005	0/2								
	シ * ク ロ ロ メ タ ン (mg/l)			<0.002	0/2								
	四塩化炭素(mg/l)			<0.0002	0/2								
康	1,2- シ			<0.0004	0/2 0/2								
	シス -1,2- シ クロロエチレン (mg/l)			<0.002 <0.004	0/2								
	1,1,1- トリクロロエタン (mg/l)			<0.004	0/2								
項	1,1,2- トリクロロエタン (mg/l)			<0.0006	0/2								
	トリクロロエチレン (mg/l)			<0.001	0/2								
	テトラクロロエチレン (mg/l)			<0.001	0/2								
目	1,3- シ クロロフ ° ロ へ ° ン (mg/l)			<0.0002	0/2								
	チ ウ ラ ム (mg/l)			<0.0006	0/2								
	シマシ ・ ン (mg/l)			<0.0003	0/2								
	チオへ゛ンカルフ゛(mg/l)			<0.002	0/2								
	へ ・ ン セ ・ ン (mg/l)			<0.001	0/2								
	セ レ ン (mg/l)			<0.001	0/2								
	硝酸性窒素及び亜硝酸性窒素(mg/l)	0.51	0.02	1.00	0/2								
	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/2								
特	銅 (mg/l)												
殊	鉄 (溶 解 性) (mg/l)												
項目	マンカ゛ン (溶 解 性) (mg/l)												
<u> </u>	7 □ Δ (mg/l)												
	E P N (mg/l)			(0.55)	/-								
	7 I / - 1 (mg/l)			<0.001	-/2								
	クロロホルム (mg/l)			<0.001	-/2								
その	ホルムアルデヒド (mg/l)			<0.008	-/2								
の他	アンモニア性窒素 (mg/l) ・	0.61	0.00	1	-/n								
の項	硝酸性窒素(mg/l) 亜硝酸性窒素(mg/l)	0.51	0.02	1 <0.01	-/2 -/2								
目	里 明 版 注 至 系 (mg/l) リン 酸 性 リン (mg/l)	0.02	<0.01	0.01	-/2 -/6								
		0.02	₹0.01	0.04	/ U								
	塩 化 物 イ オ ン (mg/l)	16500	12000	18000	-/6	17833	17000	18000	-/6				
	塩 分 濃 度 (‰)	30	22	34	-/6	500	500	.5500	, ,				
	/			<u></u>				1	1	L	1	1	1

	海 域 名						下 津 初	島海域					
	地 点 名	St.	1(全層) (E	3【基】,皿【2	補】)	;	St. 2 (B【补	甫】,皿【基】)	St.	3(表層)(/	A【基】, II【	補】)
	測定値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		8.1	8.3	0/12		8.1	8.3	0/6		8.1	8.3	0/6
生	D O (mg/l)	8.5	7.1	10	0/18	8.6	7.5	9.9	0/6	8.4	7.2	9	1/6
		(1.6)				(1.4)				(1.2)			
活	C O D (mg/l)	1.5	1.1	2.4	0/6	1.2	1.0	1.6	0/6	1.1	0.8	1.4	0/6
環	S S (mg/l)	3	1	8	-/12	3	1	7	-/6	3	3	4	-/6
境	大 腸 菌 数 (CFU/100ml)	9	0	44	7/12	1	0	5	3/6	1	0	4	0/6
項	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	0/6			<0.5	0/6			<0.5	0/6
	全 窒 素 (mg/l)	0.33	0.12	1.50	1/12	0.18	0.13	0.25	0/6	0.14	0.11	0.20	0/6
目	全 燐 (mg/l)	0.024	0.006	0.051	0/12	0.021	0.012	0.036	0/6	0.017	0.006	0.023	0/6
	全 亜 鉛 (mg/l)									0.002	<0.001	0.003	-/6
	カ ト ゜ ミ ウ ム (mg/l)			<0.0003	0/2							<0.0003	0/2
	全 シ 7 ン (mg/l)			<0.1	0/2							<0.1	0/2
	鉛 (mg/l)			<0.005	0/2							<0.005	0/2
	六 価 ク ロ ム (mg/l)			<0.01	0/2							<0.01	0/2
	砒 素 (mg/l)	0.001	0.001	0.001	0/2					0.001	0.001	0.001	0/2
	総 水 銀 (mg/l)			<0.0005	0/2							<0.0005	0/2
	ア ル キ ル 水 銀 (mg/l)												
健	P C B (mg/l)			<0.0005	0/2							<0.0005	0/2
	シ [*] ク ロ ロ メ タ ン (mg/l)			<0.002	0/2							<0.002	0/2
	四 塩 化 炭 素 (mg/l)			<0.0002	0/2							<0.0002	0/2
康	1,2- シ [*] クロロエタン (mg/l)			<0.0004	0/2							<0.0004	0/2
	1,1- シ ゚ クロロエチレン (mg/l)			<0.002	0/2							<0.002	0/2
	シス -1,2- シ゛クロロエチレン (mg/l)			<0.004	0/2							<0.004	0/2
項	1,1,1- トリクロロエタン (mg/l)			<0.01	0/2							<0.01	0/2
	1,1,2- トリクロロエタン (mg/l)			<0.0006	0/2			-				<0.0006	0/2
	トリクロロエチレン (mg/l)			<0.001	0/2							<0.001	0/2
	テトラクロロエチレン (mg/l)			<0.001	0/2							<0.001	0/2
	1,3- シ クロロフ ° ロヘ ° ン (mg/l)			<0.0002	0/2							<0.0002	0/2
	チ ウ ラ ム (mg/l)			<0.0006	0/2							<0.0006	0/2
	シマシ * ン (mg/l)			<0.0003	0/2							<0.0003	0/2
	チオヘ゛ンカルフ゛(mg/l)			<0.002	0/2							<0.002	0/2
	へ * ン セ * ン (mg/l)			<0.001	0/2							<0.001	0/2
	セ レ ン (mg/l)			<0.001	0/2							<0.001	0/2
	硝酸性窒素及び亜硝酸性窒素(mg/l)	0.51	0.02	1.00	0/2					0.02	<0.02	0.02	0/2
_	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/2		1					<0.005	0/2
特	銅 (mg/l)												
殊項	鉄 (溶 解 性) (mg/l)												
目目	マンカ゛ン(溶解性)(mg/l)												
-	7 Π Δ (mg/l)												
	E P N (mg/l)											40.000	
	7 I / - 1/ (mg/l)			<0.001	-/2							<0.001	-/2
	クロロホルム (mg/l)			<0.001	-/2							<0.001	-/2
そ	ホルムアルデヒド (mg/l)			<0.008	-/2							<0.008	-/2
の他	アンモニア性窒素 (mg/l)												
の	硝酸性窒素(mg/l)	0.51	0.02	1	-/2					0.015	0.01	0.02	-/2
項目	亜 硝 酸 性 窒 素 (mg/l)		40.71	<0.01	-/2						45.7	<0.01	-/2
	リン酸性リン (mg/l)	0.02	<0.01	0.04	-/6	0.01	<0.01	0.01	-/6	0.01	<0.01	0.01	-/6
	濁 度 (mg/l)			12000	,,,,	.=		126::					
	塩 化 物 イ オ ン (mg/l)		12000	18000	-/12	17833	17000	18000	-/6	18000	18000	18000	-/6
	塩 分 濃 度 (‰)	30	22	34	-/6	33	31	34	-/6	33	33	34	-/6

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名						下 津 初	島海域					
	地 点 名	St.	3(中層)(/	4【基】, Ⅱ【	補】)	St.	3(下層)(4【基】, Ⅱ【	補】)	St.	3(全層) (A	4【基】, Ⅱ【名	哺】)
	測定値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	х/у
	р Н		8.1	8.3	0/6			8.3			8.1	8.3	0/12
生	D O (mg/l)	8.3	7.3	9	1/6	8.1	7.1	9.3	2/6	8.2	7.1	9.4	4/18
		(<0.5)								(1.3)			
活	C O D (mg/l)	1.2	0.9	1.4	0/6					1.1	0.8	1.4	0/6
環	S S (mg/l)	3	1	5	-/6					3	1	5	-/12
境	大 腸 菌 数 (CFU/100ml)	12	0	74	0/6					7	0	74	0/12
項	N - へ キ サ ン 抽 出 物 質 (mg/l)											<0.5	0/6
	全 窒 素 (mg/l)	0.18	0.13	0.25	0/6					0.16	0.11	0.25	0/12
	全 燐 (mg/l)	0.018	0.005	0.027	0/6					0.017	0.005	0.027	0/12
	全 亜 鉛 (mg/l)												
	カト゜ξ ウ Δ (mg/l)											<0.0003	0/2
	全 シ ア ン (mg/l)											<0.1	0/2
	鉛 (mg/l)											<0.005	0/2
	六 価 ク ロ ム (mg/l)											<0.01	0/2
	砒 素 (mg/l)									0.001	0.001	0.001	0/2
	総 水 銀 (mg/l)											<0.0005	0/2
	ア ル キ ル 水 銀 (mg/l)												
健	P C B (mg/l)											<0.0005	0/2
	シ ゚ ク ロ ロ メ タ ン (mg/l)											<0.002	0/2
	四 塩 化 炭 素 (mg/l)											<0.0002	0/2
康	1,2- シ											<0.0004	0/2
	1,1- シ゜クロロェチレン (mg/l)											<0.002	0/2
	シス -1,2- シ゛クロロエチレン (mg/l)											<0.004	0/2
項	1,1,1- トリクロロエタン (mg/l)											<0.01	0/2
^	1,1,2- トリクロロエタン (mg/l)											<0.0006	0/2
	トリクロロエチレン (mg/l)											<0.001	0/2
B	テトラクロロエチレン (mg/l)											<0.001	0/2
	1,3- シ											<0.0002	0/2
	チ ウ ラ ム (mg/l)											<0.0006	0/2
	シマシ [*] ン (mg/l)											<0.0003	0/2
	チオヘ゛ンカルフ゛(mg/l)											<0.002	0/2
	へ ・ ン セ ・ ン (mg/l)											<0.001	0/2
	セ レ ン (mg/l)											<0.001	0/2
-	硝酸性窒素及び亜硝酸性窒素(mg/l)									0.02	<0.02	0.02	0/2
	1,4- シ * オ キ サ ン (mg/l)		-									<0.005	0/2
特	銅 (mg/l)												
殊	鉄 (溶 解 性) (mg/l)												
項目	マンカ゛ン (溶解性) (mg/l)												
-	7 □ Δ (mg/l)												
	E P N (mg/l)												
	7 I / - 1/ (mg/l)											<0.001	-/2
	クロロホルム (mg/l)											<0.001	-/2
そ	ホルムアルデヒド (mg/l)											<0.008	-/2
の他	アンモニア性窒素 (mg/l)												
の	硝酸性窒素 (mg/l)									0.015	0.01	0.02	-/2
項目	亜 硝 酸 性 窒 素 (mg/l)											<0.01	-/2
	リン酸性リン (mg/l)									0.01	<0.01	0.01	-/6
	置 度 (mg/l)												
	塩化物イオン(mg/l)	18000	18000	18000	-/6					18000	18000	18000	-/12
	塩 分 濃 度 (‰)									33	33	34	-/6

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名						下 津 初	島海域					
	地 点 名	St.	5(表層)(E	B【基】,皿【 [;]	補】)	St.	5(中層)(E	B【基】,皿【 ²	補】)	St.	5(下層)(В【基】, Ⅲ【	補】)
	測定值測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		8.1	8.3	0/6		8.1	8.3	0/6			8.3	
生	D O (mg/l)	8.5	7.3	9.4	0/6	8.5	7.6	9.3	0/6	8.3	7.1	9.1	0/6
活		(1.3)				(<0.5)							
	C O D (mg/l)	1.2	1.0	1.6	0/6	1.2	0.7	1.5	0/6				
環	S S (mg/l)	2	<1	3	-/6	4	1	9	-/6				
境	大 腸 菌 数 (CFU/100ml)	5	0	15	5/6	7	0	37	5/6			8	
項	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	0/6							8	
目	全 窒 素 (mg/l)	0.21	0.11	0.30	0/6	0.17	0.13	0.20	0/6			MOOD 000	
	全 燐 (mg/l)	0.020	0.013	0.024	0/6	0.017	0.006	0.023	0/6				
-	全 亜 鉛 (mg/l) カト゛ミウム (mg/l)	0.002	<0.001	0.003	-/6								
				<0.0003 <0.1	0/2							0000	
	全 シ ァ ン (mg/l) 鉛 (mg/l)			<0.005	0/2								
	六 価 ク ロ ム (mg/l)			<0.003	0/2								
	- 八 塩 / I A (ilig/l) - 砒 素 (mg/l)	0.001	0.001	0.001	0/2								
	総 水 銀 (mg/l)			<0.0005	0/2								
	ア ル キ ル 水 銀 (mg/l)				· ·								
健	P C B (mg/l)			<0.0005	0/2								
TXE.	シ [*] ク ロ ロ メ タ ン (mg/l)			<0.002	0/2								
	四塩化炭素(mg/l)			<0.0002	0/2							0.000	
康	1,2- シ [・] ク ロ ロ ェ タ ン (mg/l)			<0.0004	0/2								
J.珠	1,1- シ [*] クロロエチレン (mg/l)			<0.002	0/2							000000000	
	シス −1,2− シ [*] クロロエチレン (mg/l)			<0.004	0/2								
項	1,1,1- トリクロロエタン (mg/l)			<0.01	0/2								
4	1,1,2- トリクロロエタン (mg/l)			<0.0006	0/2								
	トリクロロエチレン (mg/l)			<0.001	0/2								
l	テトラクロロエチレン (mg/l)			<0.001	0/2								
"	1,3- シ * クロロフ ° ロヘ ° ン (mg/l)			<0.0002	0/2							8	
	f j j λ (mg/l)			<0.0006	0/2								
	y			<0.0003	0/2								
	チオヘ゛ンカルフ゛(mg/l)			<0.002	0/2								
	へ ・ ン セ ・ ン (mg/l)			<0.001	0/2								
	セ レ ン (mg/l) 硝酸性窒素及び亜硝酸性窒素(mg/l)	0.12	0.10	<0.001 0.13	0/2								
}	明版性		0.10	<0.005	0/2								
H	銅 (mg/l)												
特殊													
項	マンカ [*] ン(溶解性)(mg/l)												
目	7 П Д (mg/l)												
	E P N (mg/l)												
	フ ェ ノ ー ル (mg/l)			<0.001	-/2								
	クロロホルム (mg/l)			<0.001	-/2								
そ	ホルムアルデヒド (mg/l)			<0.008	-/2								
の	ア ン モ ニ ア 性 窒 素 (mg/l)												
他の	硝 酸 性 窒 素 (mg/l)	0.11	0.09	0.13	-/2								
項目	亜 硝 酸 性 窒 素 (mg/l)			<0.01	-/2								
	リン酸性リン (mg/l)	0.01	<0.01	0.01	-/6								
	濁 度 (mg/l)												
	塩 化 物 イ オ ン (mg/l)		17000	18000	-/6	18000	18000	18000	-/6				
	塩 分 濃 度 (‰)	32	31	33	-/6			T. A. C.		<u> </u>		000	

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名						下 津 初	島海域					
	地 点 名	St.	5 (全層) (B【基】, 皿【	補】)	St.	7(表層) (E	8【基】, Ⅲ【	補】)	St.	7(中層) (E	3【基】,皿【	補】)
	測定値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	х/у
	р Н		8.1	8.3	0/12		8.1	8.3	0/6		8.1	8.3	0/6
生	D O (mg/l)	8.4	7.1	9.4	0/18	8.5	7.4	9.1	0/6	8.4	7.3	9.4	0/6
		(1.3)				(1.3)				(<0.5)			
活	C O D (mg/l)	1.2	0.7	1.6	0/6	1.1	0.7	1.4	0/6	1.3	1.0	1.7	0/6
環	S S (mg/l)	3	<1	9	-/12	2	1	5	-/6	3	1	4	-/6
境	大 腸 菌 数 (CFU/100ml)	6	0	37	8/12	9	0	52	2/6	37	0	220	3/6
項	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	0/6			<0.5	0/6				
	全 窒 素 (mg/l)	0.19	0.11	0.30	0/12	0.20	0.09	0.26	0/6	0.18	0.15	0.24	0/6
目	全 燐 (mg/l)	0.018	0.006	0.024	0/12	0.024	0.014	0.049	0/6	0.018	0.009	0.024	0/6
	全 亜 鉛 (mg/l)					0.001	<0.001	0.002	-/6				
	カ ト ゜ ミ ウ ム (mg/l)			<0.0003	0/2			<0.0003	0/2				
	全 シ 7 ン (mg/l)			<0.1	0/2			<0.1	0/2				
	鉛 (mg/l)			<0.005	0/2			<0.005	0/2				
	六 価 ク ロ ム (mg/l)			<0.01	0/2			<0.01	0/2				
	砒 素 (mg/l)	0.001	0.001	0.001	0/2	0.001	0.001	0.001	0/2				
	総 水 銀 (mg/l)			<0.0005	0/2			<0.0005	0/2				
	ア ル キ ル 水 銀 (mg/l)												
健	P C B (mg/l)			<0.0005	0/2			<0.0005	0/2				
	シ ゚ ク ロ ロ メ タ ン (mg/l)			<0.002	0/2			<0.002	0/2				
	四 塩 化 炭 素 (mg/l)			<0.0002	0/2			<0.0002	0/2				
康	1,2- シ [*] ク ロ ロ エ タ ン (mg/l)			<0.0004	0/2			<0.0004	0/2				
	1,1- シ゜クロロエチレン (mg/l)			<0.002	0/2			<0.002	0/2				
	シス -1,2- シ゛クロロエチレン (mg/l)			<0.004	0/2			<0.004	0/2				
項	1,1,1- トリクロロエタン (mg/l)			<0.01	0/2			<0.01	0/2				
7	1,1,2- トリクロロエタン (mg/l)			<0.0006	0/2			<0.0006	0/2				
	トリクロロエチレン (mg/l)			<0.001	0/2			<0.001	0/2				
	テトラクロロエチレン (mg/l)			<0.001	0/2			<0.001	0/2				
目	1,3- シ クロロフ ° ロヘ ° ン (mg/l)			<0.0002	0/2			<0.0002	0/2				
	チ ウ ラ ム (mg/l)			<0.0006	0/2			<0.0006	0/2				
	シマシ * ン (mg/l)			<0.0003	0/2			<0.0003	0/2				
	チオヘ゛ンカルフ゛(mg/l)			<0.002	0/2			<0.002	0/2				
	へ * ン セ * ン (mg/l)			<0.001	0/2			<0.001	0/2				
	セ レ ン (mg/l)			<0.001	0/2			<0.001	0/2				
	硝酸性窒素及び亜硝酸性窒素(mg/l)	0.12	0.10	0.13	0/2	0.095	<0.02	0.17	0/2				
<u> </u>	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/2	<u> </u>		<0.005	0/2				
特	銅 (mg/l)												
殊項	鉄 (溶 解 性) (mg/l)												
月日	マンカ゛ン (溶 解 性) (mg/l)												
<u> </u>	7 Π Δ (mg/l)												
	E P N (mg/l)												
	7 I / - 1/ (mg/l)			<0.001	-/2			<0.001	-/2				
	クロロホルム (mg/l)			<0.001	-/2			<0.001	-/2				
そ	ホルムアルデヒド (mg/l)			<0.008	-/2			<0.008	-/2				
の他	アンモニア性窒素 (mg/l)												
の	硝酸性窒素(mg/l)	0.11	0.09	0.13	-/2	0.09	<0.01	0.16	-/2				
項目	亜 硝 酸 性 窒 素 (mg/l)		40.71	<0.01	-/2		45.71	<0.01	-/2				
	リン酸性リン (mg/l)	0.01	<0.01	0.01	-/6	0.01	<0.01	0.01	-/6				
	濁 度 (mg/l)	.=	1=0	12000		17833.33	17000	18000	-/6	18000	18000	18000	-/6
	塩化物イオン(mg/l)		17000	18000	-/12	33	31	34	-/6				
	塩 分 濃 度 (‰)	32	31	33	-/6]							

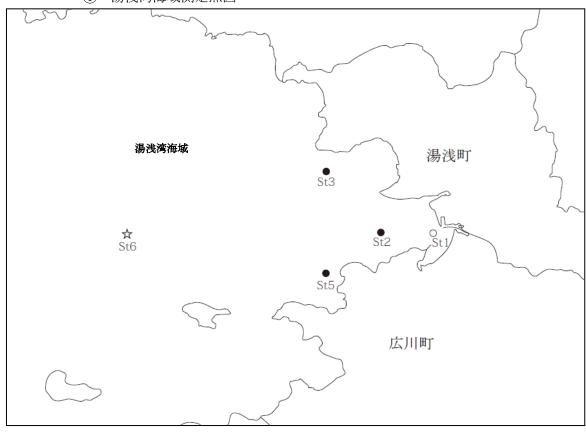
(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名						下 津 初	島海域					
	地 点 名	St.	7(下層)([3【基】,皿【	補】)	St.	7(全層) (E	3【基】,皿【	補】)	St.	8 (表層) (A【基】,皿【	補】)
	測定値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н			8.3			8.1	8.3	0/12		7.8	8.2	0/6
生	D O (mg/l)	8.4	7.1	9	0/6	8.4	7.1	9	0/18	8.7	7.4	10	1/6
						(1.5)				(1.8)			
活	C O D (mg/l)					1.2	0.7	1.7	0/6	1.8	1.3	3.4	1/6
環	S S (mg/l)					3	1	5	-/12	10	<1	51	-/6
境	大 腸 菌 数 (CFU/100ml)					23	0	220	5/12	188	2	500	2/6
項	N - へ キ サ ン 抽 出 物 質 (mg/l)							<0.5	0/6			<0.5	0/6
	全 窒 素 (mg/l)					0.19	0.09	0.26	0/12	0.52	0.22	0.92	2/6
目	全 燐 (mg/l)					0.021	0.009	0.049	0/12	0.038	0.019	0.100	0/6
	全 亜 鉛 (mg/l)									0.003	<0.001	0.013	-/6
	カ ト ゜ ミ ウ ム (mg/l)							<0.0003	0/2			<0.0003	0/2
	全 シ ア ン (mg/l)							<0.1	0/2			<0.1	0/2
	鉛 (mg/l)							<0.005	0/2			<0.005	0/2
	六 価 ク ロ ム (mg/l)							<0.01	0/2			<0.01	0/2
	砒 素 (mg/l)					0.001	0.001	0.001	0/2	0.001	<0.001	0.001	0/2
	総 水 銀 (mg/l)							<0.0005	0/2			<0.0005	0/2
	ア ル キ ル 水 銀 (mg/l)												
健	P C B (mg/l)							<0.0005	0/2			<0.0005	0/2
	シ ^ ク ロ ロ メ タ ン (mg/l)							<0.002	0/2			<0.002	0/2
	四 塩 化 炭 素 (mg/l)							<0.0002	0/2			<0.0002	0/2
康	1,2- シ							<0.0004	0/2			<0.0004	0/2
冰	1,1- シ゛クロロェチレン (mg/l)							<0.002	0/2			<0.002	0/2
	シス -1,2- シ゛クロロエチレン (mg/l)							<0.004	0/2			<0.004	0/2
_	1,1,1- ト リ ク ロ ロ エ タ ン (mg/l)							<0.01	0/2			<0.01	0/2
項	1,1,2- トリクロロエタン (mg/l)							<0.0006	0/2			<0.0006	0/2
	ト リ ク ロ ロ エ チ レ ン (mg/l)							<0.001	0/2			<0.001	0/2
	テトラクロロエチレン (mg/l)							<0.001	0/2			<0.001	0/2
目	1,3- シ゛クロロフ゜ロヘ゜ン (mg/l)							<0.0002	0/2			<0.0002	0/2
	チ ウ ラ ム (mg/l)							<0.0006	0/2			<0.0006	0/2
	シ マ シ ・ ン (mg/l)							<0.0003	0/2			<0.0003	0/2
	チオヘ゛ンカルフ゛(mg/l)							<0.002	0/2			<0.002	0/2
	へ ・ ン セ ・ ン (mg/l)							<0.001	0/2			<0.001	0/2
	セ レ ン (mg/l)							<0.001	0/2			<0.001	0/2
	硝酸性窒素及び亜硝酸性窒素(mg/l)					0.095	<0.02	0.17	0/2	0.63	0.33	0.92	0/2
	1,4- シ * オ キ サ ン (mg/l)							<0.005	0/2			<0.005	0/2
#+	銅 (mg/l)												
特殊	鉄 (溶 解 性) (mg/l)												
項目	マンカ [*] ン(溶 解 性) (mg/l)												
Ľ	7 П Д (mg/l)												
	E P N (mg/l)												
	フ ェ ノ ー ル (mg/l)							<0.001	-/2			<0.001	-/2
	クロロホルム (mg/l)							<0.001	-/2			<0.001	-/2
そ	ホルムアルデヒド (mg/l)							<0.008	-/2			<0.008	-/2
の	ア ン モ ニ ア 性 窒 素 (mg/l)												
他の	硝 酸 性 窒 素 (mg/l)					0.09	<0.01	0.16	-/2	0.62	0.32	0.91	-/2
項	亜 硝 酸 性 窒 素 (mg/l)							<0.01	-/2			<0.01	-/2
目	リン酸性リン (mg/l)					0.01	<0.01	0.01	-/6	0.02	0.01	0.02	-/6
	置 度 (mg/l)					17917	17000	18000	-/12				
	塩 化 物 イ オ ン (mg/l)					33	31	34	-/6	8316.667	600	16000	-/6
	塩 分 濃 度 (‰)									15	1	29	-/6
			l.		1	·	1			·		R	

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

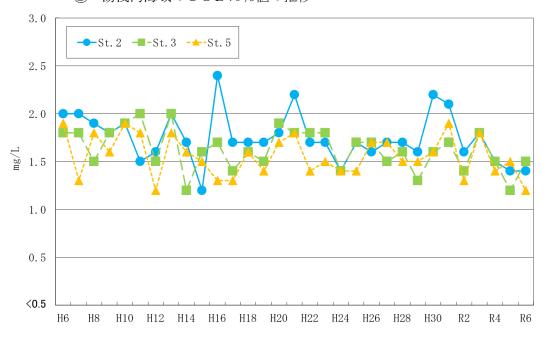
	海 域 名				下 津 初	島海域			
	地 点 名	St.	8(中層)(A	4【基】,皿[:	補】)	St.	8(全層)(A	4【基】, Ⅲ【ネ	甫】)
	測定値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		8.1	8.2	0/6		7.8	8.2	0/12
生	D O (mg/l)	8.3	7.2	9	1/6	8.5	7.2	10	2/12
		(<0.5)				(1.7)			
活	C O D (mg/l)	1.6	1.3	1.8	0/6	1.7	1.3	3.4	1/6
環	S S (mg/l)	6	<0.5	9	-/6	8	<1	51	-/12
境	大 腸 菌 数 (CFU/100ml)	66	0	230	1/6	127	0	500	2/12
項	N - へ キ サ ン 抽 出 物 質 (mg/l)							<0.5	0/6
目	全 窒 素 (mg/l)	0.21	0.18	0.24	0/6	0.36	0.18	0.9	2/12
	全 燐 (mg/l)	0.021	0.009	0.026	0/6	0.029	0.009	0.10	0/12
	全 亜 鉛 (mg/l)								
	カ ト ゜ ミ ウ ム (mg/l)							<0.0003	0/2
	全 シ ア ン (mg/l)							<0.1	0/2
	鉛 (mg/l)							<0.005	0/2
	六価り口ム (mg/l)					0.000	(0.55)	<0.01	0/2
	砒 素 (mg/l)					0.001	<0.001	0.001	0/2
	総 水 銀 (mg/l)							<0.0005	0/2
	アルキル水 銀 (mg/l) P C B (mg/l)							<0.0005	0/2
健	P C B (mg/l) シ ・ ク ロ ロ メ タ ン (mg/l)							<0.0005	0/2
	四塩化炭素(mg/l)							<0.002	0/2
	1,2- シ [*] クロロエタン (mg/l)							<0.0002	0/2
康	1,1- シ * クロロエチレン (mg/l)							<0.002	0/2
	シス -1,2- シ゛クロロエチレン (mg/l)							<0.004	0/2
	1,1,1- トリクロロエタン (mg/l)							<0.01	0/2
項	1,1,2-トリクロロエタン (mg/l)							<0.0006	0/2
	トリクロロエチレン (mg/l)							<0.001	0/2
	テトラクロロエチレン (mg/l)							<0.001	0/2
目	1,3- シ゛クロロフ゜ロヘ゜ン (mg/l)							<0.0002	0/2
	チ ウ ラ ム (mg/l)		-					<0.0006	0/2
	シ マ シ ・ ン (mg/l)							<0.0003	0/2
	チオへ゛ンカルフ゛(mg/l)							<0.002	0/2
	へ ・ ン セ ・ ン (mg/l)							<0.001	0/2
	セ レ ン (mg/l)							<0.001	0/2
	硝酸性窒素及び亜硝酸性窒素(mg/l)					0.63	0.33	0.92	0/2
\blacksquare	1,4- シ * オ キ サ ン (mg/l)							<0.005	0/2
特	銅 (mg/l)								
殊項	鉄 (溶 解 性) (mg/l)								
目	マンカ・ン(溶解性)(mg/l)								
\vdash	7 Π Δ (mg/l)								
	E P N (mg/l) フェノール (mg/l)							<0.001	_/2
								<0.001	-/2 -/2
	ク ロ ロ ホ ル ム (mg/l) ホ ル ム ア ル デ ヒド (mg/l)							<0.001	-/2 -/2
その	ホルム アルテヒト (mg/l) アンモニア性 窒素 (mg/l)		9					\0.000	/ 4
他	が が					0.62	0.32	0.91	-/2
の項	更 硝 酸 性 窒 素 (mg/l)					5.02	5.5E	<0.01	-/2
目	リン酸性リン (mg/l)					0.02	0.01	0.02	-/6
	演 度 (mg/l)							-	
	塩 化 物 イ オ ン (mg/l)	17000	16000	18000	-/6	12658	600	18000	-/12
	塩 分 濃 度 (‰)		9			15	1	29	-/6

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。


2-30 湯浅湾海域水質測定結果

①のとおり 5 測定点でそれぞれ年 6 回(3 測定点で、中層年 6 回を含む。)の測定を実施した。その結果は、③のとおりである。

この海域の環境基準類型(海域アの部)は、Aをあてはめている。


CODの75%値でみると、全ての環境基準点で基準値(2 mg/1)に適合している。

① 湯浅湾海域測定点図

- ●COD等の環境基準点 ☆T-N、T-Pの環境基準点
- ●COD等かつT-N、T-Pの環境基準点 ○その他の観測点

② 湯浅湾海域のCOD75%値の推移

③ 湯浅湾海域水質測定結果一覧

	—————————————————————————————————————						湯浅湯	弯 海 域					
	地 点 名	;	St. 1 (A[7	甫】,Ⅱ【補】)	St.	2(表層) (/	4【基】, II【	補】)	St.	2(中層)(A	4【基】, II【	補】)
	測定値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		7.7	8.1	2/6		7.8	8.3	0/6		8.1	8.3	0/6
生	D O (mg/l)	8.6	6.8	10	1/6	8.6	6.8	9.8	1/6	8.4	7.1	10	1/6
		(2.1)				(1.2)				(<0.5)			
活	C O D (mg/l)	1.7	1.2	2.1	2/6	1.3	1.0	2.3	1/6	1.4	1.0	1.7	0/6
環	S S (mg/l)	4	1	7	-/6	3	<1	4	-/6	3	2	4	-/6
境	大 腸 菌 数 (CFU/100ml)	78	3	150	0/6	33	0	110	0/6	54	0	270	0/6
項	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	0/6			<0.5	0/6				
	全 窒 素 (mg/l)	0.50	0.13	0.75	5/6	0.31	0.13	0.98	1/6	0.20	0.14	0.29	0/6
目	全 燐 (mg/l)	0.039	0.016	0.069	0/6	0.026	0.017	0.043	0/6	0.018	0.010	0.022	0/6
	全 亜 鉛 (mg/l)					0.001	0.001	0.002	-/6				
	カ ト ゚ ξ ウ Δ (mg/l)							<0.0003	0/2				
	全 シ ア ン (mg/l)							<0.1	0/2				
	鉛 (mg/l)							<0.005	0/2				
	六 価 ク ロ ム (mg/l)							<0.01	0/2				
	砒 素 (mg/l)					0.001	<0.001	0.001	0/2				
	総 水 銀 (mg/l)							<0.0005	0/2				
	ア ル キ ル 水 銀 (mg/l)												
健	P C B (mg/l)							<0.0005	0/2				
	シ [*] ク ロ ロ メ タ ン (mg/l)							<0.002	0/2				
	四 塩 化 炭 素 (mg/l)							<0.0002	0/2				
康	1,2- シ							<0.0004	0/2				
冰	1,1- シ ゚ ク ロ ロ エ チ レ ン (mg/l)							<0.002	0/2				
	シス -1,2- シ゛クロロエチレン (mg/l)							<0.004	0/2				
	1,1,1- ト リ ク ロ ロ エ タ ン (mg/l)							<0.01	0/2				
項	1,1,2- トリクロロエタン (mg/l)							<0.0006	0/2				
	トリクロロエチレン (mg/l)							<0.001	0/2				
_	テトラクロロエチレン (mg/l)							<0.001	0/2				
目	1,3- シ゛クロロフ゜ロヘ゜ン (mg/l)							<0.0002	0/2				
	チ ウ ラ ム (mg/l)							<0.0006	0/2				
	シ マ シ ゜ ン (mg/l)							<0.0003	0/2				
	チオヘ゛ンカルフ゛(mg/l)							<0.002	0/2				
	へ * ソ セ * ソ (mg/l)							<0.001	0/2				
	セ レ ン (mg/l)							<0.001	0/2				
	硝酸性窒素及び亜硝酸性窒素(mg/l)					0.49	0.04	0.93	0/2				
	1,4- シ * オ キ サ ン (mg/l)							<0.005	0/2				
特	銅 (mg/l)												
殊	鉄 (溶 解 性) (mg/l)												
項目	マンカ゛ン(溶解性)(mg/l)												
<u> </u>	<i>1</i> □ Д (mg/l)												
	E P N (mg/l)												
	フェノール (mg/l)							<0.001	-/2				
	クロロホルム (mg/l)							<0.001	-/2				
そ	ホルムアルデヒド (mg/l)							<0.008	-/2				
他	アンモニア性窒素 (mg/l)							6.51					
の項	硝酸性窒素 (mg/l)					0.48	0.03	0.93	-/2				
目	亜 硝 酸 性 窒 素 (mg/l)					0.55	(0.7)	<0.01	-/2				
	リン酸性リン (mg/l) ****					0.02	<0.01	0.03	-/6				
	濁 度 (mg/l)			10577	<u> </u>	450	04	10555	/-	47000	17000	105	
	塩化物イオン(mg/l)		310	18000	-/6	15350	3100	18000	-/6	17833	17000	18000	-/6
	塩 分 濃 度 (‰)	19	0	34	-/6	28	5	33	-/6				

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名						湯浅湯	弯海域		-			
	地 点 名	St.	2(下層) (A	4【基】,Ⅱ【	補】)	St.	2(全層)(A	4【基】, Ⅱ【	補】)	St.	3 (表層)(A【基】, Ⅱ【	補】)
	測定值測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н			8.3			7.8	8.3	0/12		8.1	8.3	0/6
生	D O (mg/l)	8.3	6.7	10	1/6	8.4	6.7	10	3/18	8.6	7.7	10	0/6
						(1.4)				(1.3)			
活	C O D (mg/l)					1.4	1.0	2.3	0/6	1.3	0.8	1.8	0/6
環	S S (mg/l)					3	<1	4	-/12	3	1	4	-/6
境	大 腸 菌 数 (CFU/100ml)					43	0	270	0/12	81	0	460	1/6
項	N - へ キ サ ン 抽 出 物 質 (mg/l)							<0.5	0/6			<0.5	0/6
	全窒素(mg/l)					0.25	0.13	0.98	1/12	0.23	0.11	0.69	1/6
"	全 燐 (mg/l)					0.022	0.010	0.043	0/12	0.022	0.015	0.045	0/6
	全 亜 鉛 (mg/l)									0.001	<0.001	0.002	-/6
	カ ト ゜ ミ ウ ム (mg/l)							<0.0003	0/2			<0.0003	0/2
	全 シ ア ン (mg/l)							<0.1	0/2			<0.1	0/2
	鉛 (mg/l)							<0.005	0/2			<0.005	0/2
	六価クロム (mg/l)						42	<0.01	0/2			<0.01	0/2
	砒 素 (mg/l)		-			0.001	<0.001	0.001	0/2	0.001	0.001	0.001	0/2
	総 水 銀 (mg/l)							<0.0005	0/2			<0.0005	0/2
	アルキル水 銀 (mg/l)							/0.000F	0.70	#DEE:	#055	#DEC:	0.70
健	P C B (mg/l) シ [*] ク ロ ロ メ タ ン (mg/l)							<0.0005	0/2	#REF!	#REF!	#REF!	0/2
								<0.002	0/2			<0.002	
	四 塩 化 炭 素 (mg/l)							<0.0002 <0.0004	0/2			<0.0002 <0.0004	0/2
康	1,2-							<0.0004	0/2			<0.0004	0/2
	シス -1,2- シ カロロエチレン (mg/l)							<0.002	0/2			<0.002	0/2
	1,1,1- トリクロロエタン (mg/l)							<0.004	0/2			<0.01	0/2
項	1,1,2- トリクロロエタン (mg/l)							<0.0006	0/2			<0.0006	0/2
	トリクロロエチレン (mg/l)							<0.001	0/2			<0.001	0/2
	テトラクロロエチレン (mg/l)							<0.001	0/2			<0.001	0/2
目	1,3- シ カロロフ ゚ロヘ ゚ン (mg/l)							<0.0002	0/2			<0.0002	0/2
	チ ウ ラ ム (mg/l)							<0.0006	0/2			<0.0006	0/2
	シ マ シ ・ ン (mg/l)							<0.0003	0/2			<0.0003	0/2
	チオヘ゛ンカルフ゛(mg/l)							<0.002	0/2			<0.002	0/2
	へ ・ ン セ ・ ン (mg/l)							<0.001	0/2			<0.001	0/2
	セ レ ン (mg/l)							<0.001	0/2			<0.001	0/2
	硝酸性窒素及び亜硝酸性窒素(mg/l)					0.49	0.04	0.93	0/2	0.29	<0.02	0.56	0/2
	1,4- シ * オ キ サ ン (mg/l)							<0.005	0/2			<0.005	0/2
特	銅 (mg/l)												
殊	鉄 (溶 解 性) (mg/l)												
項目	マンカ゛ン(溶 解 性) (mg/l)												
Ĺ	ク ロ ム (mg/l)												
	E P N (mg/l)												
	フェノ - ル (mg/l)							<0.001	-/2			<0.001	-/2
	クロロホルム (mg/l)							<0.001	-/2			<0.001	-/2
そ	ホルムアルデヒド (mg/l)							<0.008	-/2			<0.008	-/2
の他	アンモニア性窒素 (mg/l)												
の	硝酸性窒素 (mg/l)					0.48	0.03	0.93	-/2	0.285	<0.01	0.56	-/2
項目	亜 硝 酸 性 窒 素 (mg/l)							<0.01	-/2			<0.01	-/2
	リン酸性リン (mg/l)					0.02	<0.01	0.03	-/6	0.01	<0.01	0.02	-/6
	濁 度 (mg/l)					,	6:5-	4				4.555	
	塩化物イオン(mg/l)					16592	3100	18000	-/12	16833	12000	18000	-/6
	塩 分 濃 度 (‰)					28	5	33	-/6	32	22	34	-/6

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名						湯浅湯	弯 海 域					
	地 点 名	St.	3 (中層) (4【基】, Ⅱ【	補】)	St.	3 (下層) (A【基】, Ⅱ【	補】)	St.	3(全層)(A	4【基】, II【	補】)
	測定値測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	х/у
	р Н		8.1	8.3	0/6			8.3			8.1	8.3	0/12
生	D O (mg/l)	8.5	7.5	9.6	0/6	8.6	7.5	10	0/6	8.6	7.5	10	0/18
		(<0.5)								(1.5)			
活	C O D (mg/l)	1.4	0.9	1.7	0/6					1.3	0.8	1.8	0/6
環	S S (mg/l)	4	2	8	-/6					3	1	8	-/12
境	大 腸 菌 数 (CFU/100ml)	80	0	450	1/6					80	0	460	2/12
項	N - へ キ サ ン 抽 出 物 質 (mg/l)											<0.5	0/6
	全 窒 素 (mg/l)	0.20	0.13	0.26	0/6					0.21	0.11	0.69	1/12
目	全 燐 (mg/l)	0.015	0.006	0.019	0/6					0.019	0.006	0.045	0/12
	全 亜 鉛 (mg/l)												
	カト ・ ミ ウ ム (mg/l)											<0.0003	0/2
	全 シ ア ン (mg/l)											<0.1	0/2
	鉛 (mg/l)											<0.005	0/2
	六 価 ク ロ ム (mg/l)											<0.01	0/2
	砒 素 (mg/l)									0.001	0.001	0.001	0/2
	総 水 銀 (mg/l)											<0.0005	0/2
	ア ル キ ル 水 銀 (mg/l)												
健	P C B (mg/l)									#REF!	#REF!	#REF!	0/2
	シ [*] ク ロ ロ メ タ ン (mg/l)											<0.002	0/2
	四塩化炭素(mg/l)											<0.0002	0/2
康	1,2- シ [*] ク ロ ロ エ タ ン (mg/l)											<0.0004	0/2
""	1,1- シ [*] クロロエチレン (mg/l)											<0.002	0/2
	シス -1,2- シ゛クロロエチレン (mg/l)											<0.004	0/2
項	1,1,1- トリクロロエタン (mg/l)											<0.01	0/2
7	1,1,2- トリクロロエタン (mg/l)											<0.0006	0/2
	トリクロロエチレン (mg/l)											<0.001	0/2
	テトラクロロエチレン (mg/l)											<0.001	0/2
目	1,3- シ * クロロフ ° ロヘ ° ン (mg/l)											<0.0002	0/2
	チ ウ ラ ム (mg/l)											<0.0006	0/2
	シマシ [*] ン (mg/l)											<0.0003	0/2
	チオヘ゛ンカルフ゛(mg/l)											<0.002	0/2
	へ ・ ン セ ・ ン (mg/l)											<0.001	0/2
	セ レ ソ (mg/l)											<0.001	0/2
-	硝酸性窒素及び亜硝酸性窒素(mg/l)									0.29	<0.02	0.56	0/2
_	1,4- シ * オ キ サ ン (mg/l)											<0.005	0/2
特	銅 (mg/l)												
殊項	鉄 (溶 解 性) (mg/l)												
目	マンカ゛ン (溶 解 性) (mg/l)												
-	7 □ Δ (mg/l)												
	E P N (mg/l)											40.000	
	7 I / - 1/ (mg/l)											<0.001	-/2
	クロロホルム (mg/l)											<0.001	-/2
そ	ホルムアルデヒド (mg/l)											<0.008	-/2
の他	アンモニア性窒素 (mg/l)												
の	硝酸性窒素 (mg/l)									0.285	<0.01	0.56	-/2
項目	亜 硝 酸 性 窒 素 (mg/l)											<0.01	-/2
	リン酸性リン (mg/l)									0.01	<0.01	0.02	-/6
	置 度 (mg/l)												
	塩化物イオン(mg/l)	17833	17000	18000	-/6					17333	12000	18000	-/12
	塩 分 濃 度 (‰)						•			32	22	34	-/6

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名						湯浅濱	弯 海 域					
	地 点 名	St.	5 (表層)(A【基】, Ⅱ【	補】)	St.	5(中層) (A	4【基】,Ⅱ【	補】)	St.	5(下層)(/	4【基】, Ⅱ【	補】)
	測定値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		8.1	8.3	0/6		8.1	8.3	0/6			8.3	
生	D O (mg/l)	8.5	7.7	10	0/6	8.5	7.6	10	0/6	8.4	7.7	10	0/6
		(1)				(<0.5)							
活	C O D (mg/l)	0.9	0.7	1.1	0/6	1.2	0.7	1.6	0/6				
環	S S (mg/l)	4	2	5	-/6	5	2	11	-/6				
境	大 腸 菌 数 (CFU/100ml)	50	0	300	0/6	89	0	530	1/6			000000	
項	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	0/6							8	
l	全 窒 素 (mg/l)	0.13	0.11	0.15	0/6	0.17	0.11	0.22	0/6				
-	全 燐 (mg/l)	0.015	0.011	0.018	0/6	0.017	0.004	0.029	0/6				
_	全 亜 鉛 (mg/l)	0.001	<0.001	0.002	-/6								
	カト * ミウム (mg/l)			<0.0003	0/2								
	全 シ ア ン (mg/l)			<0.1	0/2								
	鉛 (mg/l)			<0.005	0/2								
	六価り口ム (mg/l) 砒素 (mg/l)	0.001	0.001	<0.01 0.001	0/2						-		
	砒素 (mg/l)総水銀 (mg/l)	0.001	0.001	<0.0005	0/2								
	R			\0.0000	0/2								
l	P C B (mg/l)			<0.0005	0/2								
健	シ * ク ロ ロ メ タ ン (mg/l)			<0.002	0/2								
	四 塩 化 炭 素 (mg/l)			<0.0002	0/2								
	1,2- シ			<0.0004	0/2								
康	1,1- シ * クロロエチレン (mg/l)			<0.002	0/2								
	シス -1,2- シ゛クロロエチレン (mg/l)			<0.004	0/2								
	1,1,1- トリクロロエタン (mg/l)			<0.01	0/2								
項	1,1,2- トリクロロエタン (mg/l)			<0.0006	0/2								
	トリクロロエチレン (mg/l)			<0.001	0/2								
	テトラクロロエチレン (mg/l)			<0.001	0/2								
目	1,3- シ			<0.0002	0/2								
	チ ウ ラ ム (mg/l)			<0.0006	0/2								
	シ マ シ ・ ン (mg/l)			<0.0003	0/2								
	チオヘ゛ンカルフ゛(mg/l)			<0.002	0/2			-					
	へ ゛ ン セ ゛ ン (mg/l)			<0.001	0/2						ļ		
	セ レ ソ (mg/l)			<0.001	0/2								
	硝酸性窒素及び亜硝酸性窒素(mg/l)	0.06	<0.02	0.10	0/2								
_	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/2								
特	銅 (mg/l)												
殊項	鉄 (溶解性) (mg/l)												
目	マンカ゛ン(溶解性)(mg/l) クロム (mg/l)												
\vdash													
	E P N (mg/l)			<0.001	-/2								
	クロロホルム (mg/l)			<0.001	-/2 -/2						 		
	カ			<0.001	-/2 -/2								
その	アンモニア性窒素 (mg/l)			(0.000	/ -								
他		0.055	<0.01	0.1	-/2								
の項	亜 硝 酸 性 窒 素 (mg/l)			<0.01	-/2								
目	リン酸性リン (mg/l)	0.01	<0.01	0.01	-/6								
	演 度 (mg/l)												
	塩 化 物 イ オ ン (mg/l)	17833	17000	18000	-/6	18000	18000	18000	-/6				
	塩 分 濃 度 (‰)	33	32	34	-/6								
					4						1	K	

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

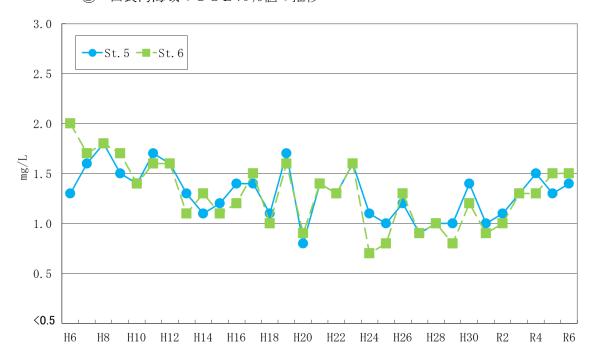
	海 域 名				湯浅湍	弯海 域			
	地 点 名	St.	5 (全層) (A【基】, II【			St. 6 (A[*	浦】,Ⅱ【基】	
	測定值	平均	最小値	最大値	x/y	平均	最小値	最大値	х/у
	<u>測 定 項 目</u>		8.1	8.3	0/12		8.1	8.3	0/6
	D O (mg/l)	8.5	7.6	10	0/18	8.6	7.6	9.4	0/6
生		(1.2)				(1.3)			
活	C O D (mg/l)	1.1	0.7	1.6	0/6	1.1	0.7	1.3	0/6
環	S S (mg/l)	4	2	11	-/12	2	1	5	-/6
境	大 腸 菌 数 (CFU/100ml)	70	0	530	1/12	5	0	29	0/6
項	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	0/6			<0.5	0/6
	全 窒 素 (mg/l)	0.15	0.11	0.22	0/12	0.16	0.10	0.24	0/6
目	全 燐 (mg/l)	0.016	0.004	0.029	0/12	0.019	0.007	0.039	0/6
	全 亜 鉛 (mg/l)								
	カト ・ ミ ウ ム (mg/l)			<0.0003	0/2				
	全 シ ア ン (mg/l)			<0.1	0/2				
	鉛 (mg/l)			<0.005	0/2				
	六 価 ク ロ ム (mg/l)			<0.01	0/2				
	砒 素 (mg/l)	0.001	0.001	0.001	0/2				
	総 水 銀 (mg/l)			<0.0005	0/2				
	ア ル キ ル 水 銀 (mg/l)								
健	P C B (mg/l)			<0.0005	0/2				
	シ ゚ ク ロ ロ メ タ ン (mg/l)			<0.002	0/2				
	四塩化炭素(mg/l)			<0.0002	0/2				
康	1,2- シ [・] ク ロ ロ エ タ ン (mg/l)			<0.0004	0/2				
	1,1- シ゛クロロェチレン (mg/l)			<0.002	0/2				
	シス -1,2- シ゛クロロエチレン (mg/l)			<0.004	0/2				
項	1,1,1- ト リ ク ロ ロ エ タ ン (mg/l)			<0.01	0/2				
	1,1,2-トリクロロエタン (mg/l)			<0.0006	0/2				
	トリクロロエチレン (mg/l)			<0.001	0/2				
目	テトラクロロエチレン (mg/l)			<0.001	0/2				
	1,3- シ クロロフ ° ロヘ ° ン (mg/l)			<0.0002	0/2				
	チ ウ ラ ム (mg/l) シ マ シ ・ ン (mg/l)			<0.0006	0/2				
	シマシ゛ン (mg/l) チオヘ゛ンカルフ゛(mg/l)			<0.0003	0/2				
	7 4 ヘ フ // / (mg/l) へ ・ ン セ ・ ン (mg/l)			<0.002	0/2				
	セ レ ン (mg/l)			<0.001	0/2				
	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	0.06	<0.02	0.10	0/2				
	1,4- シ * オ キ サ ン (mg/l)	0.00	₹0.02	<0.005	0/2				
\vdash	銅 (mg/l)			.5.555	-, <u>-</u>				
特殊	鉄 (溶 解 性) (mg/l)								
項	マンカ゛ン (溶 解 性) (mg/l)								
目	7 П Д (mg/l)								
H	E P N (mg/l)								
	フ ェ ノ ー ル (mg/l)			<0.001	-/2				
	クロロホルム (mg/l)			<0.001	-/2				
2	ホルムアルデヒド (mg/l)			<0.008	-/2				
その	ア ン モ ニ ア 性 窒 素 (mg/l)								
他の	硝 酸 性 窒 素 (mg/l)	0.055	<0.01	0.1	-/2				
項	亜 硝 酸 性 窒 素 (mg/l)			<0.01	-/2				
目	リン酸性リン (mg/l)	0.01	<0.01	0.01	-/6				
	濁 度 (mg/l)								
	塩 化 物 イ オ ン (mg/l)	17917	17000	18000	-/12	17833	17000	18000	-/6
	塩 分 濃 度 (‰)	33	32	34	-/6	33	32	34	-/6

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

2-31 由良湾海域水質測定結果

①のとおり3測定点でそれぞれ年6回(2測定点で、中層年6回を含む。)の測定を実施した。その結果は、3のとおりである。

この海域の環境基準類型(海域アの部)は、Aをあてはめている。


CODの75%値でみると、全ての環境基準点で基準値(2 mg/1)に適合している。

① 由良湾海域測定点図

- ●COD等の環境基準点 ☆T-N、T-Pの環境基準点
- ●COD等かつT-N、T-Pの環境基準点 ○その他の観測点

② 由良湾海域のCOD75%値の推移

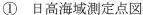
③ 由良湾海域水質測定結果一覧

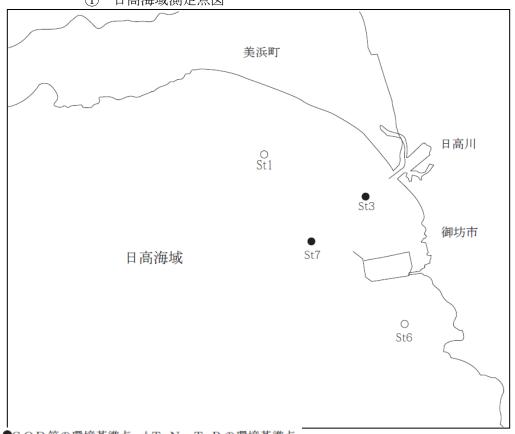
生活環境項目	地点名 測定値 則定項目 P H D O (mg/l)	平均	St. 1(A【ネ 最小値)	St.	5(表層)(A	4【基】, Ⅱ【	浦】)	St.	5(中層)(A	4【基】, Ⅱ【ネ	甫】)
生活環境項	則 定 項 目	平均	最小値	日上片									
生活環境項	р Н			最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
活環境項	D O (mg/l)		8.1	8.2	0/6		8.1	8.2	0/6		8.1	8.2	0/6
活環境項		8.2	7.3	9.4	2/6	8.1	7.1	9.1	2/6	8.1	6.9	9.1	2/6
環境項		(1.3)				(1.2)				(<0.5)			
境項	C O D (mg/l)	1.2	1.0	1.3	0/6	1.1	0.8	1.2	0/6	1.5	1.2	1.9	0/6
項 _	S S (mg/l)	2	1	5	-/6	3	1	5	-/6	3	1	4	-/6
	大 腸 菌 数 (CFU/100ml)	1	0	2	0/6	7	0	30	0/6	28	0	160	0/6
	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	0/6			<0.5	0/6				
	全 窒 素 (mg/l)	0.12	0.06	0.17	0/6	0.11	0.06	0.14	0/6	0.16	0.09	0.27	0/6
	全 燐 (mg/l)	0.017	0.009	0.023	0/6	0.014	0.011	0.022	0/6	0.015	0.010	0.023	0/6
	全 亜 鉛 (mg/l)					0.002	<0.001	0.003	-/6				
	カ ト ゜ ミ ウ ム (mg/l)							<0.0003	0/2				
ıL	全 シ ア ン (mg/l)							<0.1	0/2				
	鉛 (mg/l)							<0.005	0/2				
	六 価 ク ロ ム (mg/l)							<0.01	0/2				
	砒 素 (mg/l)					0.001	0.001	0.001	0/2				
i L	総 水 銀 (mg/l)							<0.0005	0/2				
	ア ル キ ル 水 銀 (mg/l)												
健	P C B (mg/l)							<0.0005	0/2				
	シ [*] ク ロ ロ メ タ ン (mg/l)							<0.002	0/2				
	四塩化炭素(mg/l)							<0.0002	0/2				
康 -	1,2- シ [*] ク ロ ロ エ タ ン (mg/l)							<0.0004	0/2				
	1,1- シ ^ クロロエチレン (mg/l)							<0.002	0/2				
	シス -1,2- シ゛クロロエチレン (mg/l)							<0.004	0/2				
項 -	1,1,1- トリクロロエタン (mg/l)							<0.01	0/2				
	1,1,2- トリクロロエタン (mg/l)							<0.0006	0/2				
-	トリクロロエチレン (mg/l)							<0.001	0/2				
╽╻┠	テトラクロロエチレン (mg/l)							<0.001	0/2				
	1,3- シ クロロフ ° ロヘ ° ン (mg/l)							<0.0002	0/2				
-	チ ウ ラ ム (mg/l) シ マ シ ・ ン (mg/l)							<0.0006 <0.0003	0/2				
-	シマシ゛ン (mg/l) チオヘ゛ンカルフ゛(mg/l)							<0.002	0/2				
╽╟								<0.002	0/2				
-								<0.001	0/2				
╽┠	セ レ ン (mg/l) 硝酸性窒素及び亜硝酸性窒素(mg/l)							<0.001	0/2				
ŀ⊩								<0.02	0/2				
#	銅 (mg/l)		***************************************					.5.550	-/-				
特殊	鉄 (溶 解 性) (mg/l)												
項	マンカ゛ン (溶 解 性) (mg/l)												
▮▮	7 П Д (mg/l)												
\sqcap	E P N (mg/l)												
	フェノール (mg/l)							<0.001	-/2				
 	クロロホルム (mg/l)							<0.001	-/2				
	ホルムアルデヒド (mg/l)							<0.008	-/2				
	ア ン モ ニ ア 性 窒 素 (mg/l)												
	硝 酸 性 窒 素 (mg/l)							<0.01	-/2				
	亜 硝 酸 性 窒 素 (mg/l)							<0.01	-/2				
	リ ン 酸 性 リ ン (mg/l)							<0.01	-/6				
	濁 度 (mg/l)												
	塩 化 物 イ オ ン (mg/l)	18167	18000	19000	-/6	18333	18000	19000	-/6	18333	18000	19000	-/6
t	塩 分 濃 度 (‰)	34	33	34	-/6	34	33	34	-/6				

	海 域 名						由良活	弯 海 域					
	地 点 名	St.	5(下層)(4【基】, Ⅱ【	補】)	St.	5(全層)(/	4【基】, Ⅱ【	補】)	St.	6(表層)(/	4【基】, Ⅱ【表	基】)
	測定値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	х/у
	р Н			8.2			8.1	8.2	0/12		8.1	8.2	0/6
生	D O (mg/l)	7.9	7.1	9.1	2/6	8.0	6.9	9.1	6/18	7.9	6.4	8.7	2/6
						(1.4)				(1.6)			
活	C O D (mg/l)					1.3	0.8	1.9	0/6	1.4	1.0	1.6	0/6
環	S S (mg/l)					3	1	5	-/12	2	1	4	-/6
境	大 腸 菌 数 (CFU/100ml)					18	0	160	0/12	2	0	11	0/6
項	N - へ キ サ ン 抽 出 物 質 (mg/l)							<0.5	0/6			<0.5	0/6
``	全 窒 素 (mg/l)					0.14	0.06	0.27	0/12	0.13	0.06	0.30	0/6
目	全 燐 (mg/l)					0.015	0.010	0.023	0/12	0.018	0.011	0.033	0/6
	全 亜 鉛 (mg/l)			***************************************				***************************************		0.001	<0.001	0.002	-/6
	カ ト ˙ ミ ウ ム (mg/l)							<0.0003	0/2			<0.0003	0/2
	全 シ ア ン (mg/l)							<0.1	0/2			<0.1	0/2
	鉛 (mg/l)							<0.005	0/2			<0.005	0/2
	六 価 ク ロ ム (mg/l)							<0.01	0/2			<0.01	0/2
	砒 素 (mg/l)					0.001	0.001	0.001	0/2	0.001	0.001	0.001	0/2
	総 水 銀 (mg/l)							<0.0005	0/2			<0.0005	0/2
	アルキル水銀 (mg/l)												
健	P C B (mg/l)							<0.0005	0/2			<0.0005	0/2
	シ [*] ク ロ ロ メ タ ン (mg/l)							<0.002	0/2			<0.002	0/2
	四塩化炭素(mg/l)							<0.0002	0/2			<0.0002	0/2
康	1,2- シ [・] ク ロ ロ エ タ ン (mg/l)							<0.0004	0/2			<0.0004	0/2
	1,1- シ [*] クロロエチレン (mg/l)							<0.002	0/2			<0.002	0/2
	シス -1,2- シ゛クロロエチレン (mg/l)							<0.004	0/2			<0.004	0/2
項	1,1,1- ト リ ク ロ ロ エ タ ン (mg/l)							<0.01	0/2			<0.01	0/2
	1,1,2- トリクロロエタン (mg/l)							<0.0006	0/2			<0.0006	0/2
	トリクロロエチレン (mg/l)							<0.001	0/2			<0.001	0/2
B	テトラクロロエチレン (mg/l)							<0.001	0/2			<0.001	0/2
-	1,3- シ ゚ ク ロ ロ フ ゚ ロ へ ゚ ン (mg/l)							<0.0002	0/2			<0.0002	0/2
	チ ウ ラ ム (mg/l) シ マ シ ・ ン (mg/l)							<0.0006	0/2			<0.0006	0/2
								<0.0003	0/2			<0.0003	0/2
	チ オ へ ゛ ン カ ル フ ゛ (mg/l) へ ゜ ン セ ゜ ン (mg/l)							<0.002	0/2			<0.002	0/2
								<0.001	0/2			<0.001	0/2
	セレン (mg/l)							<0.001	0/2			<0.001	0/2
ŀ	硝酸性窒素及び亜硝酸性窒素(mg/l) 1.4- シ オ キ サ ン (mg/l)							<0.02 <0.005	0/2			<0.02 <0.005	0/2
	1,4- ソ オ キ サ ノ (mg/l) 銅 (mg/l)							√0.000	0/2			\U.UU3	U/ Z
特	鉄 (溶 解 性) (mg/l)												
殊項	マンカ [*] ン(溶解性)(mg/l)												
目	7 П Д (mg/l)												
	E P N (mg/l)												
	7 I / - 1 (mg/l)							<0.001	-/2			<0.001	-/2
	クロロホルム (mg/l)							<0.001	-/2			<0.001	-/2
	ホルムアルデヒド (mg/l)							<0.008	-/2			<0.008	-/2
	ア ン モ ニ ア 性 窒 素 (mg/l)												
	硝 酸 性 窒 素 (mg/l)							<0.01	-/2			<0.01	-/2
	亜 硝 酸 性 窒 素 (mg/l)							<0.01	-/2			<0.01	-/2
	リン酸性リン (mg/l)							<0.01	-/6	0.01	<0.01	0.01	-/6
	濁 度 (mg/l)												
	塩 化 物 イ オ ン (mg/l)					18333	18000	19000	-/12	18333	18000	19000	-/6
	塩 分 濃 度 (‰)					34	33	34	-/6	34	33	34	-/6
	(備考) v・環境其準に			de l			,			0 / 1-1-	1		

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深0.5m、中層は水深2.0m、下層は海底直上1.0mで採水。無表記は表層で採水。

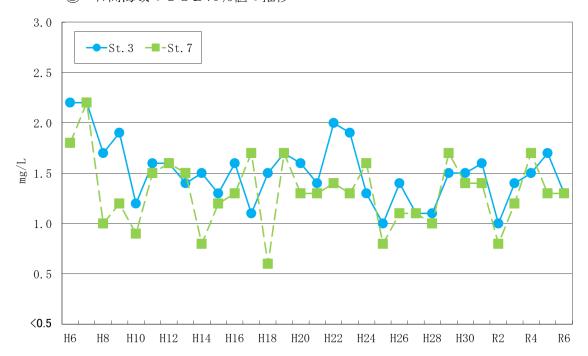
	海 域 名						由良活	弯 海 域					
	地 点 名	St.	6 (中層) (A【基】, II【	基])	St.	6 (下層) (A【基】, Ⅱ【	基])	St.	6(全層)(A【基】, Ⅱ【	基])
	測定値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		8.1	8.2	0/6			8.2			8.1	8.2	0/12
生	D O (mg/l)	8.2	7.5	8.8	1/6	8.2	7.3	8.8	1/6	8.1	6.4	9.6	3/18
		(<0.5)								(1.5)			
活	C O D (mg/l)	1.4	1.3	1.6	0/6					1.4	1.0	1.6	0/6
環	S S (mg/l)	1.8	1	3	-/6					2	1	4	-/12
境	大 腸 菌 数 (CFU/100ml)	3	0	11	0/6					3	0	11	0/12
項	N - へ キ サ ン 抽 出 物 質 (mg/l)											<0.5	0/6
	全 窒 素 (mg/l)	0.12	0.07	0.15	0/6					0.13	0.06	0.3	0/12
目	全 燐 (mg/l)	0.014	0.008	0.020	0/6					0.016	0.008	0.033	0/12
	全 亜 鉛 (mg/l)											V000000000	
	カ ト ゛ ミ ウ ム (mg/l)											<0.0003	0/2
	全 シ ア ン (mg/l)											<0.1	0/2
	鉛 (mg/l)											<0.005	0/2
	六 価 ク ロ ム (mg/l)											<0.01	0/2
	砒 素 (mg/l)									0.001	0.001	0.001	0/2
	総 水 銀 (mg/l)											<0.0005	0/2
	ア ル キ ル 水 銀 (mg/l)												
健	P C B (mg/l)											<0.0005	0/2
	シ [*] ク ロ ロ メ タ ン (mg/l)											<0.002	0/2
	四塩化炭素(mg/l)											<0.0002	0/2
康	1,2- シ [*] ク ロ ロ エ タ ン (mg/l)											<0.0004	0/2
	1,1- シ ゚ ク ロ ロ エ チ レ ン (mg/l)											<0.002	0/2
	シス -1,2- シ゛クロロエチレン (mg/l)											<0.004	0/2
項	1,1,1- ト リ ク ロ ロ エ タ ン (mg/l)											<0.01	0/2
7	1,1,2- トリクロロエタン (mg/l)											<0.0006	0/2
	トリクロロエチレン (mg/l)											<0.001	0/2
目	テトラクロロエチレン (mg/l)											<0.001	0/2
	1,3- シ゛クロロフ゜ロヘ゜ン (mg/l)											<0.0002	0/2
	チ ウ ラ ム (mg/l)											<0.0006	0/2
	シマシ ・ ン (mg/l)											<0.0003	0/2
	チオヘ゛ンカルフ゛(mg/l)											<0.002	0/2
	へ * ン セ * ン (mg/l)											<0.001	0/2
	セ レ ン (mg/l)											<0.001	0/2
	硝酸性窒素及び亜硝酸性窒素(mg/l)											<0.02	0/2
_	1,4- シ * オ キ サ ン (mg/l)											<0.005	0/2
特	銅 (mg/l)												
殊項	鉄 (溶 解 性) (mg/l)									-			
目	マンカ゛ン (溶解性) (mg/l)												
-	<i>1</i> □ Δ (mg/l)												
	E P N (mg/l)											/0.001	/0
	7 I / - 1/ (mg/l)											<0.001	-/2
	クロロホルム (mg/l)											<0.001	-/2 -/2
	ホルムアルデヒド (mg/l) アンモニア性窒素 (mg/l)											<0.008	-/2
	パフセー パ 性 室 素 (mg/l) 硝 酸 性 窒 素 (mg/l)											<0.01	-/2
	明 版 性 至 条 (mg/l) 亜 硝 酸 性 窒 素 (mg/l)											<0.01	-/2 -/2
	里 明 段 住 至 条 (IIIg/I) リン 酸 性 リン (mg/I)									0.01	<0.01	0.01	-/2 -/6
										0.01	(0.01	0.01	, 0
	塩 化 物 イ オ ン (mg/l)	18333	18000	19000	-/6					18333	18000	19000	-/12
	塩分濃度(‰)	10000	10000	15000	7.0					34	33	34	-/12 -/6
$\overline{}$	(備考) w・	- ^ ·	<u> </u>	147 .	AA 20		,	()		1	30	J-7	, u


(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深0.5m、中層は水深2.0m、下層は海底直上1.0mで採水。無表記は表層で採水。


2-32 日高海域水質測定結果

①のとおり4測定点でそれぞれ年6回(2測定点で、中層年6回を含む。)の測定を実施した。その結果は、③のとおりである。

この海域の環境基準類型(海域アの部)は、Aをあてはめている。


CODの75%値でみると、全ての環境基準点で基準値(2 mg/1)に適合している。

- ●COD等の環境基準点 ☆T-N、T-Pの環境基準点
- ●COD等かつT-N、T-Pの環境基準点 ○その他の観測点

② 日高海域のCOD75%値の推移

③ 日高海域水質測定結果一覧

	海 域 名						日高	海域					
	地 点 名		St. 1 (A	【補】, 一)		S	t. 3 (表層)	(A【基】, -	-)	s	t. 3 (中層)	(A【基】, -	-)
	測定値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	p H		8.1	8.2	0/6		7.7	8.2	1/6		8.1	8.2	0/6
生	D O (mg/l)	8.0	7.4	8.4	1/6	8.3	7.3	9.2	1/6	8.2	7.4	8.7	1/6
		(1)				(1.3)				(<0.5)			
活	C O D (mg/l)	0.9	0.6	1.0	0/6	1.2	1.0	1.4	0/6	1.2	1.0	1.5	0/6
環	S S (mg/l)	2	<1	3	-/6	2	<1	2	-/6	4	2	7	-/6
境	大 腸 菌 数 (CFU/100ml)	5	0	32	0/6	24	5	70	0/6	2	0	6	0/6
項	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	0/6			<0.5	0/6				
	全 窒 素 (mg/l)	0.11	0.07	0.15	-/6	0.17	0.13	0.2	-/6	0.12	0.05	0.17	-/6
目	全 燐 (mg/l)	0.014	0.011	0.021	-/6	0.016	0.010	0.026	-/6	0.014	0.009	0.021	-/6
	全 亜 鉛 (mg/l)					0.002	<0.001	0.005	-/6				
	カト ・ ミ ウ ム (mg/l)							<0.0003	0/2				
	全 シ ア ン (mg/l)							<0.1	0/2				
	鉛 (mg/l)							<0.005	0/2				
	六 価 ク ロ ム (mg/l)							<0.01	0/2				
	砒 素 (mg/l)					0.001	0.001	0.001	0/2				
	総 水 銀 (mg/l)							<0.0005	0/2				
	ア ル キ ル 水 銀 (mg/l)												
健	P C B (mg/l)							<0.0005	0/2				
	シ [*] ク ロ ロ メ タ ン (mg/l)							<0.002	0/2				
	四 塩 化 炭 素 (mg/l)							<0.0002	0/2				
康	1,2- シ [*] ク ロ ロ エ タ ン (mg/l)							<0.0004	0/2				
	1,1- シ [*] クロロエチレン (mg/l)							<0.002	0/2				
	シス -1,2- シ゛クロロエチレン (mg/l)							<0.004	0/2				
項	1,1,1- トリクロロエタン (mg/l)							<0.01	0/2				
	1,1,2- トリクロロエタン (mg/l)							<0.0006	0/2				
	トリクロロエチレン (mg/l)							<0.001	0/2				
	テトラクロロエチレン (mg/l)							<0.001	0/2				
	1,3- シ * クロロフ ° ロヘ ° ン (mg/l)							<0.0002	0/2				
	チ ウ ラ ム (mg/l)							<0.0006	0/2				
	シマシ ・ ン (mg/l)							<0.0003	0/2				
	チオヘ゛ンカルフ゛(mg/l)							<0.002	0/2				
	へ * ン セ * ン (mg/l)							<0.001	0/2				
	セ レ ン (mg/l)							<0.001	0/2				
	硝酸性窒素及び亜硝酸性窒素(mg/l)					0.03	0.02	0.04	0/2				
<u>_</u>	1,4- シ * オ キ サ ン (mg/l)							<0.005	0/2	<u> </u>			
特	銅 (mg/l)												
殊項	鉄 (溶解性) (mg/l)												
目	マンカ゛ン (溶解性) (mg/l)												
	7 □ Δ (mg/l)												
	E P N (mg/l)							Z0.001	_ /0				
								<0.001	-/2 -/2				
	クロロホルム (mg/l) ホルムアルデヒド (mg/l)							<0.001 <0.008	-/2 -/2				
	ホルムアルテヒト (mg/l)アンモニア性窒素 (mg/l)							∖υ.υ∪8	-/ Z				
	が で 一 が 注 至 系 (mg/l)					0.03	0.02	0.04	-/2				
	亜 硝 酸 性 窒 素 (mg/l)					0.00	0.02	<0.04	-/2				
	型 明 酸 性 星 来 (mg/l)					0.01	<0.01	0.01	-/2 -/6				
						0.01	\0.01	0.01	/ 0				
	塩 化 物 イ オ ン (mg/l)	17833	16000	19000	-/6	11233	1900	18000	-/6	18333	18000	19000	-/6
	塩分濃度(‰)	33	30	35	-/6	21	3	33	-/6	10000	10000	10000	/ 0
	-m /J /mg /2 (/00 /	00	50	55	/ 0	1	J	55	/ 0]			

	海 域 名						日高	海域					
	地 点 名	S	st. 3 (下層)	(A【基】, -	-)	s	t. 3 (全層)	(A【基】, -	-)		St. 6 (A	【補】, 一)	
	測定值測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н			8.2			7.7	8.2	1/12		8.1	8.2	0/6
生	D O (mg/l)	8.0	7.3	8.4	1/6	8.2	7.3	9.2	3/18	8.0	7.4	8.6	1/6
						(1.3)				(1.3)			
活	C O D (mg/l)					1.2	1.0	1.5	0/6	1.0	0.8	1.4	0/6
環	S S (mg/l)					3	<1	7	-/12	3	<1	4	-/6
境	大 腸 菌 数 (CFU/100ml)					13	0	70	0/12	1	0	3	0/6
項	N - へ キ サ ン 抽 出 物 質 (mg/l)							<0.5	0/6			<0.5	0/6
目	全窒素(mg/l)					0.14	0.05	0.2	-/12	0.12	<0.05	0.18	-/6
"	全 燐 (mg/l)					0.015	0.009	0.026	-/12	0.013	0.007	0.018	-/6
	全 亜 鉛 (mg/l)												
	カ ト ゜ ミ ウ ム (mg/l)							<0.0003	0/2				
	全 シ ア ン (mg/l)							<0.1	0/2				
	鉛 (mg/l)							<0.005	0/2				
	六価クロム (mg/l)							<0.01	0/2				
	础 素 (mg/l)					0.001	0.001	0.001	0/2				
	総 水 銀 (mg/l)							<0.0005	0/2				
	アルキル水 銀 (mg/l)							/0.000F	0.70				
健	P C B (mg/l) シ [*] ク ロ ロ メ タ ン (mg/l)							<0.0005	0/2				
								<0.002 <0.0002	0/2				
	四 塩 化 炭 素 (mg/l) 1,2- シ クロロエタン (mg/l)							<0.0002	0/2				
康	1,1- シ クロロエチレン (mg/l)							<0.002	0/2				
	シス -1,2- シ カロロエチレン (mg/l)							<0.004	0/2				
	1,1,1- トリクロロエタン (mg/l)							<0.01	0/2				
項	1,1,2- トリクロロエタン (mg/l)							<0.0006	0/2				
	トリクロロエチレン (mg/l)							<0.001	0/2				
	テトラクロロエチレン (mg/l)							<0.001	0/2				
目	1,3- シ							<0.0002	0/2				
	チ ウ ラ ム (mg/l)							<0.0006	0/2				
	シ マ シ ゜ ン (mg/l)							<0.0003	0/2				
	チオヘ゛ンカルフ゛(mg/l)							<0.002	0/2				
	へ * ソ セ * ソ (mg/l)							<0.001	0/2				
	セ レ ン (mg/l)							<0.001	0/2				
	硝酸性窒素及び亜硝酸性窒素(mg/l)			_		0.03	0.02	0.04	0/2				
	1,4- シ * オ キ サ ン (mg/l)							<0.005	0/2				
特	銅 (mg/l)												
殊	鉄 (溶 解 性) (mg/l)												
項目	マンカ [*] ン(溶解性)(mg/l)												
_	7 П Д (mg/l)												
	E P N (mg/l)							46.51					
	7 I / - 1 (mg/l)							<0.001	-/2				
	クロロホルム (mg/l)							<0.001	-/2				
	ホルムアルデヒド (mg/l)							<0.008	-/2				
	アンモニア性窒素 (mg/l)					0.02	0.00	0.04	_/n				
	硝酸性窒素 (mg/l) 亜硝酸性窒素 (mg/l)					0.03	0.02	0.04 <0.01	-/2 -/2				
	型 明 酸 性 単 系 (mg/l) リ ン 酸 性 リ ン (mg/l)					0.01	<0.01	0.01	-/2 -/6				
	り プ					0.01	\0.01	0.01	/ 0				
	塩 化 物 イ オ ン (mg/l)					14783	1900	19000	-/12	18500	18000	19000	-/6
1	塩 分 濃 度 (‰)					21	3	33	-/12 -/6	34	34	35	-/6
\Box	/J /成 /又 (700)		1			- 41		00	/ U	J4	J -1	JJ	/ U

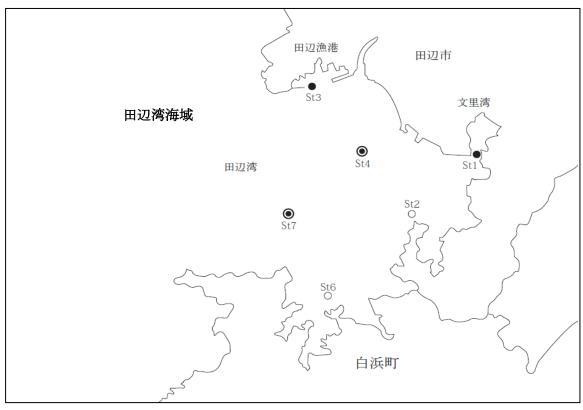
(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名						日高	海域					
	地 点 名	S	St. 7(表層)	(A【基】, -	-)	S	St. 7(中層)	(A【基】, -	-)	8	St. 7(下層)	(A【基】, -	-)
	測定値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		8.1	8.2	0/6		8.1	8.2	0/6			8.2	
生	D O (mg/l)	8.1	7.3	8.8	1/6	8.0	7.2	8.3	1/6	7.9	7.0	8.3	1/6
		(1)				(<0.5)							
活	C O D (mg/l)	1.0	0.9	1.4	0/6	1.4	1.0	1.8	0/6				
環	S S (mg/l)	2	1	3	-/6	3	1	4	-/6				
境	大 腸 菌 数 (CFU/100ml)	6	0	15	0/6	1	0	5	0/6				
項	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	0/6								
目	全 窒 素 (mg/l)	0.13	<0.05	0.18	-/6	0.15	0.10	0.23	-/6				
-	全 燐 (mg/l)	0.015	0.006	0.026	-/6	0.014	0.007	0.024	-/6				
	全 亜 鉛 (mg/l)	0.002	<0.001	0.006	-/6								
	カト゜ξ ゥ Δ (mg/l)			<0.0003	0/2								
	全 シ ア ン (mg/l)			<0.1	0/2								
	鉛 (mg/l)			<0.005	0/2								
	六 価 ク ロ ム (mg/l)	0.001	0.001	<0.01	0/2								
	砒 素 (mg/l)	0.001	0.001	0.001	0/2								
	総 水 銀 (mg/l) アルキル水 銀 (mg/l)			<0.0005	0/2						-		
	アルキル水 銀 (mg/l) P C B (mg/l)			<0.0005	0/2								
健	シ * ク ロ ロ メ タ ン (mg/l)			<0.000	0/2								
	四 塩 化 炭 素 (mg/l)			<0.0002	0/2								
	1,2- シ			<0.0004	0/2								
康	1,1- シ			<0.002	0/2			and the same of th					
	シス -1,2- シ゛クロロエチレン (mg/l)			<0.004	0/2								
	1,1,1- トリクロロエタン (mg/l)			<0.01	0/2								
項	1,1,2- トリクロロエタン (mg/l)			<0.0006	0/2								
	トリクロロエチレン (mg/l)			<0.001	0/2								
	テトラクロロエチレン (mg/l)			<0.001	0/2								
目	1,3- シ゛クロロフ゜ロヘ゜ン (mg/l)			<0.0002	0/2								
	チ ウ ラ ム (mg/l)			<0.0006	0/2								
	シマシ [*] ン (mg/l)			<0.0003	0/2								
	チオへ゛ンカルフ゛(mg/l)			<0.002	0/2								
	へ ・ ン セ ・ ン (mg/l)			<0.001	0/2								
	セ レ ン (mg/l)			<0.001	0/2								
	硝酸性窒素及び亜硝酸性窒素(mg/l)	0.05	0.03	0.06	0/2								
	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/2								
特	銅 (mg/l)												
殊	鉄 (溶 解 性) (mg/l)												
項目	マンカ゛ン (溶 解 性) (mg/l)												
_	1 □ Δ (mg/l)												
	E P N (mg/l)			/5.50							-		
	フェノール (mg/l)			<0.001	-/2						<u> </u>		
	クロロホルム (mg/l)			<0.001	-/2								
	ホルムアルデヒド (mg/l) マンェーマ性 突 表 (mg/l)			<0.008	-/2						-		
	アンモニア性窒素 (mg/l) 硝酸性窒素 (mg/l)	0.045	0.03	0.06	-/2								
	明 酸 注 至 系 (mg/l) 亜 硝 酸 性 窒 素 (mg/l)	0.040	0.03	<0.01	-/2 -/2								
	型 明 版 性 星 系 (mg/l)	0.01	<0.01	0.01	-/2 -/6								
		0.01	\U.U1	0.01	/ 0								
	塩化物イオン(mg/l)	16833	15000	19000	-/6	18333	18000	19000	-/6				
	塩 分 濃 度 (‰)	31	27	34	-/6				, ,				
_							1		8	I	1		<u> </u>

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名		日高	海 域	
	地 点 名	5	St. 7(全層)	(A【基】, -	-)
	測定值	平均	最小値	最大値	x/y
T	測 定 項 目		8.1	8.2	0/12
<u>"</u> ⊦	D O (mg/l)	8.0	7.0	8.8	3/18
生		(1.3)			
活	C O D (mg/l)	1.2	0.9	1.8	0/6
環	S S (mg/l)	3	1	4	-/12
境	大 腸 菌 数 (CFU/100ml)	3	0	15	0/12
	N - ^ キ サ ン 抽 出 物 質 (mg/l)			<0.5	0/6
項 _	全 窒 素 (mg/l)	0.14	<0.05	0.23	-/12
目	全 燐 (mg/l)	0.014	0.006	0.026	-/12
ŀ	全 亜 鉛 (mg/l)				
+	カ ト * ミ ウ ム (mg/l)			<0.0003	0/2
F	全 シ ア ン (mg/l)			<0.1	0/2
F	鉛 (mg/l)			<0.005	0/2
ŀ	六 価 ク ロ ム (mg/l)			<0.01	0/2
ŀ	- 八 山 / L イ (mg/l) 砒 素 (mg/l)	0.001	0.001	0.001	0/2
ŀ	総 水 銀 (mg/l)	0.001	0.501	<0.0005	0/2
┟	ア ル キ ル 水 銀 (mg/l)			.0.000	0/2
ŀ	P C B (mg/l)			<0.0005	0/2
健 _	シ * ク ロ ロ メ タ ン (mg/l)			<0.002	0/2
ŀ				<0.002	0/2
ŀ				<0.0002	0/2
康	1,2- シ			<0.0004	0/2
┢	シス -1,2- シ クロロエチレン (mg/l)				
┢				<0.004	0/2
項	1,1,1- ト リ ク ロ ロ エ タ ン (mg/l)			<0.01	0/2
┢	1,1,2-トリクロロエタン (mg/l)			<0.0006	0/2
┢	トリクロロエチレン (mg/l)			<0.001	0/2
⋴┞	テトラクロロエチレン (mg/l) 1,3-シ クロロフ °ロヘ °ン (mg/l)			<0.001	0/2
┢				<0.0002	0/2
ŀ	f f f f f (mg/l)			<0.0006	0/2
F	シマシ * ン (mg/l)		-	<0.0003	0/2
ŀ	チオヘ゜ンカルフ゜(mg/l)			<0.002	0/2
ŀ	へ * ン セ * ン (mg/l)			<0.001	0/2
┢	セ レ ン (mg/l)	0.05	0.00	<0.001	0/2
F	硝酸性窒素及び亜硝酸性窒素(mg/l) 1,4- シ オ キ サ ン (mg/l)	0.05	0.03	0.06	0/2
+	1,4 / 1 4 / 2 (mg/l)			<0.005	0/2
特	銅 (mg/l)				
殊 項	鉄 (溶 解 性) (mg/l)				
Î -	· · · · · · · · · · · · · · · · · · ·				
+					
ŀ	E P N (mg/l)			/0.001	- /0
}	7 I / - \(\mu\) (mg/l)			<0.001	-/2 -/2
ŀ	クロロホルム (mg/l)			<0.001	-/2 -/2
┟	ホルムアルデヒド (mg/l)			<0.008	-/2
ŀ	アンモニア性窒素 (mg/l)	0045	0.00	0.00	/2
ŀ	硝酸性窒素(mg/l)	0.045	0.03	0.06	-/2
-	亜 硝 酸 性 窒 素 (mg/l)	<u> </u>		<0.01	-/2
ŀ	リン酸性リン (mg/l)	0.01	<0.01	0.01	-/6
-	濁 度 (mg/l)				
ļ	塩 化 物 イ オ ン (mg/l)	17583	15000	19000	-/12 -/6
	塩 化 物 イ オ ン (mg/l) 塩 分 濃 度 (‰) (/備老) v・環音其準に	31	27	34	

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。


2-33 田辺湾海域水質測定結果

①のとおり6測定点でそれぞれ年6回(4測定点で、中層年6回を含む。)の測定を実施した。その結果は、③のとおりである。

この海域の環境基準類型 (海域アの部) は、文里港区 (St. 1) 及び田辺漁港区 (St. 3) にB、その他の海域 (St. 2, 4, 6, 7) にはAをあてはめている。

 ${\tt COD}$ の 75% 値でみると、全ての環境基準点で基準値(A:2 mg/1、B:3 mg/1)に適合している。

① 田辺湾海域測定点図

- ●COD等の環境基準点 ☆T-N、T-Pの環境基準点
- ●COD等かつT-N、T-Pの環境基準点 ○その他の観測点

② 田辺湾海域のCOD75%値の推移

③ 田辺湾海域水質測定結果一覧

海 域 名					E	田辺瀬	弯 海 垣	tž.				
地点名	St.	1 (表層) (B【基】, II【	補】)	1		B【基】,II【		St.	1 (下層) (B【基】,II【	補】)
測 定 値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
測 定 項 目 p H		8.1	8.2	0/6		8.1	8.2	0/6			8.2	
D O (mg/l)	8.2	7.5	8.7	0/6	7.9	6.3	9.2	0/6	7.5	6.6	9.0	0/6
生	(1.9)				(<0.5)							
活 C O D (mg/l)	1.6	1.0	2.3	0/6	1.7	1.2	2.3	0/6				
環 S S (mg/l)	2	1	4	-/6	5	3	6	-/6				
境 大 腸 菌 数 (CFU/100ml)	43	0	160	5/6	16	0	45	5/6				
項 N - ^ キ サ ン 抽 出 物 質 (mg/l)			<0.5	0/6								
全 窒 素 (mg/l)	0.18	0.09	0.41	1/6	0.24	0.16	0.36	1/6				
全 燐 (mg/l)	0.019	0.014	0.026	0/6	0.019	0.012	0.026	0/6				
全 亜 鉛 (mg/l)	0.004	0.001	0.009	-/6								
カト ・ ミ ウ ム (mg/l)			<0.0003	0/2								
全 シ ア ン (mg/l)			<0.1	0/2								
鉛 (mg/l)			<0.005	0/2								
六 価 ク ロ ム (mg/l)	0.651	0.551	<0.01	0/2								
砒 素 (mg/l)	0.001	0.001	0.001	0/2								
総 水 銀 (mg/l)			<0.0005	0/2								
7 ルキル水銀 (mg/l) P C B (mg/l)			<0.0005	0/2								
健			<0.002	0/2								
四 塩 化 炭 素 (mg/l)			<0.0002	0/2								
1,2- y ' 7 D D I 9 y (mg/l)			<0.0004	0/2								
康 1,1- シ クロロエチレン (mg/l)			<0.002	0/2								
シス -1,2- シ ^ クロロエチレン (mg/l)			<0.004	0/2								
_ 1,1,1- ト リ ク ロ ロ エ タ ン (mg/l)			<0.01	0/2								
項 1,1,2- ト リ ク ロ ロ エ タ ン (mg/l)			<0.0006	0/2								
トリクロロエチレン (mg/l)			<0.001	0/2								
テトラクロロエチレン (mg/l)			<0.001	0/2								
目 1,3- シ・クロロフ゜ロヘ゜ン (mg/l)			<0.0002	0/2								
チ ウ ラ ム (mg/l)			<0.0006	0/2								
シマシ ・ ン (mg/l)			<0.0003	0/2								
チオヘ゛ンカルフ゛(mg/l)			<0.002	0/2								
へ ・ ン セ ・ ン (mg/l)			<0.001	0/2								
セ レ ン (mg/l)			<0.001	0/2								
硝酸性窒素及び亜硝酸性窒素(mg/l)			<0.02	0/2								
1,4- ŷ ' オ キ サ ン (mg/l)			<0.005	0/2								
新 (mg/l) 新 (mg/l) 数 (溶 解 性) (mg/l)												
殊 鉄 (溶 解 性) (mg/l) マンカ・ン (溶 解 性) (mg/l)												
日 マッカッ (A A A A (mg/l)												
E P N (mg/l)					<u> </u>							
7 I / - N (mg/l)			<0.001	-/2								
クロロホルム (mg/l)			<0.001	-/2								
ホルムアルデヒド (mg/l)			<0.008	-/2								
ア ン モ ニ ア 性 窒 素 (mg/l)												
硝 酸 性 窒 素 (mg/l)	0.01	<0.01	0.01	-/2								
亜 硝 酸 性 窒 素 (mg/l)			<0.01	-/2								
リン酸性リン (mg/l)	0.02	<0.01	0.04	-/6								
濁 度 (mg/l)												
塩 化 物 イ オ ン (mg/l)	17333	13000	19000	-/6	18333	18000	19000	-/6				
塩 分 濃 度 (‰)	32	24	34	-/6								

	海 域 名					E	田 辺 湘	弯 海 垣	ŧ					
	地 点 名	St.	1(全層) (E	3【基】, Ⅱ【2	補】)	,	St. 2 (A[*	甫】,Ⅱ【補】)	St. 3(表層) (B【基】, II【補】)				
	測定値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	
	р Н		8.1	8.2	0/12		8.1	8.2	0/6		8.1	8.2	0/6	
生	D O (mg/l)	7.9	6.3	9.2	0/18	7.8	7.2	8.3	2/6	8.0	6.9	8.6	0/6	
		(2.1)				(1.5)				(1.8)				
活	C O D (mg/l)	1.7	1.0	2.3	0/6	1.2	0.8	1.5	0/6	1.3	0.6	1.9	0/6	
環	S S (mg/l)	4	1	6	-/12	2	1	4	-/6	3	2	4	-/6	
境	大 腸 菌 数 (CFU/100ml)	29	0	160	9/12	16	0	90	0/6	34	1	80	6/6	
項	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	0/6			<0.5	0/6			<0.5	0/6	
	全 窒 素 (mg/l)	0.21	0.09	0.41	2/12	0.14	0.05	0.32	1/6	0.20	0.11	0.39	1/6	
目	全 燐 (mg/l)	0.019	0.012	0.026	0/12	0.018	0.011	0.031	0/6	0.024	0.014	0.044	0/6	
	全 亜 鉛 (mg/l)									0.002	<0.001	0.005	-/6	
	カ ト ゜ ミ ウ ム (mg/l)			<0.0003	0/2							<0.0003	0/2	
	全 シ ア ン (mg/l)			<0.1	0/2							<0.1	0/2	
	鉛 (mg/l)			<0.005	0/2							<0.005	0/2	
	六 価 ク ロ ム (mg/l)			<0.01	0/2							<0.01	0/2	
	砒 素 (mg/l)	0.001	0.001	0.001	0/2					0.001	0.001	0.001	0/2	
	総 水 銀 (mg/l)			<0.0005	0/2							<0.0005	0/2	
	ア ル キ ル 水 銀 (mg/l)													
健	P C B (mg/l)			<0.0005	0/2							<0.0005	0/2	
	シ * ク ロ ロ メ タ ン (mg/l)			<0.002	0/2							<0.002	0/2	
	四塩化炭素(mg/l)			<0.0002	0/2							<0.0002	0/2	
康	1,2- シ * ク ロ ロ エ タ ン (mg/l)			<0.0004	0/2							<0.0004	0/2	
	1,1- シ * クロロエチレン (mg/l)			<0.002	0/2							<0.002	0/2	
	シス -1,2- シ゛クロロエチレン (mg/l)			<0.004	0/2							<0.004	0/2	
項	1,1,1- トリクロロエタン (mg/l)			<0.01	0/2							<0.01	0/2	
	1,1,2- トリクロロエタン (mg/l)			<0.0006	0/2							<0.0006	0/2	
	トリクロロエチレン (mg/l)			<0.001	0/2							<0.001	0/2	
目	テトラクロロエチレン (mg/l)			<0.001	0/2							<0.001	0/2	
	1,3- シ クロロフ ° ロ へ ° ン (mg/l) チ ウ ラ ム (mg/l)			<0.0002 <0.0006	0/2							<0.0002 <0.0006	0/2	
	チ ウ ラ ム (mg/l) シ マ シ ・ ン (mg/l)			<0.0003	0/2							<0.0003	0/2	
	チオヘ * ンカルフ * (mg/l)			<0.0003	0/2							<0.0003	0/2	
	/ 1 / 1 / 1 / (mg/l) へ ・ ン セ ・ ン (mg/l)			<0.002	0/2							<0.002	0/2	
	セ レ ン (mg/l)			<0.001	0/2							<0.001	0/2	
	一			<0.02	0/2					0.115	<0.02	0.21	0/2	
-	1,4- シ ・ オ キ サ ン (mg/l)			<0.02	0/2					510		<0.005	0/2	
	銅 (mg/l)				· -								. =	
特殊	鉄 (溶 解 性) (mg/l)													
項	マンカ [*] ン(溶解性)(mg/l)													
目	7 П Д (mg/l)													
	E P N (mg/l)													
	フ ェ ノ ー ル (mg/l)			<0.001	-/2							<0.001	-/2	
	クロロホルム (mg/l)			<0.001	-/2							<0.001	-/2	
	ホルムアルデヒド (mg/l)			<0.008	-/2							<0.008	-/2	
	ア ソ モ ニ ア 性 窒 素 (mg/l)													
	硝 酸 性 窒 素 (mg/l)	0.01	<0.01	0.01	-/2					0.105	<0.01	0.2	-/2	
	亜 硝 酸 性 窒 素 (mg/l)			<0.01	-/2							<0.01	-/2	
	リン酸性リン (mg/l)	0.02	<0.01	0.04	-/6					0.01	<0.01	0.03	-/6	
	濁 度 (mg/l)													
	塩 化 物 イ オ ン (mg/l)	17833	13000	19000	-/12	18000	16000	19000	-/6	16833	12000	19000	-/6	
	塩 分 濃 度 (‰)	32	24	34	-/6	33	29	35	-/6	31	23	34	-/6	

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名					E	田 辺 洋	弯 海 均	ŧ				
	地 点 名	St.	3(中層)(3【基】, Ⅱ【	補】)	St.	3(下層) (日	3【基】,Ⅱ【名	補】)	St.	3(全層) (E	3【基】, Ⅱ【ネ	補】)
	測定値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	х/у
	рН		8.1	8.2	0/6			8.2			8.1	8.2	0/12
生	D O (mg/l)	8.0	7.1	8.4	0/6	7.5	6.1	8.4	0/6	7.8	6.1	8.6	0/18
		(<0.5)								(1.7)			
活	C O D (mg/l)	1.3	0.5	1.6	0/6					1.3	0.5	1.9	0/6
環	S S (mg/l)	2	1	4	-/6					3	1	4	-/12
境	大 腸 菌 数 (CFU/100ml)	23	1	80	6/6					29	1	80	12/12
項	N - へ キ サ ン 抽 出 物 質 (mg/l)											<0.5	0/6
	全 窒 素 (mg/l)	0.17	0.10	0.23	1/6					0.18	0.10	0.39	1/12
目	全 燐 (mg/l)	0.024	0.014	0.049	0/6					0.024	0.014	0.049	0/12
	全 亜 鉛 (mg/l)												
	カ ト ゜ ミ ウ ム (mg/l)											<0.0003	0/2
	全 シ ア ン (mg/l)											<0.1	0/2
	鉛 (mg/l)											<0.005	0/2
	六 価 ク ロ ム (mg/l)											<0.01	0/2
	砒 素 (mg/l)									0.001	0.001	0.001	0/2
	総 水 銀 (mg/l)											<0.0005	0/2
	アルキル水銀 (mg/l)												
健	P C B (mg/l)											<0.0005	0/2
	シ * ク ロ ロ メ タ ン (mg/l)											<0.002	0/2
	四 塩 化 炭 素 (mg/l)											<0.0002	0/2
康	1,2- シ											<0.0004	0/2
	1,1- シ゛クロロェチレン (mg/l)											<0.002	0/2
	シス -1,2- シ゛クロロエチレン (mg/l)											<0.004	0/2
項	1,1,1- トリクロロエタン (mg/l)											<0.01	0/2
^	1,1,2- トリクロロエタン (mg/l)											<0.0006	0/2
	トリクロロエチレン (mg/l)											<0.001	0/2
B	テトラクロロエチレン (mg/l)											<0.001	0/2
	1,3- シ クロロフ ° ロヘ ° ン (mg/l)											<0.0002	0/2
	チ ウ ラ Δ (mg/l)											<0.0006	0/2
	シマシ ・ ン (mg/l)											<0.0003	0/2
	チオへ゛ンカルフ゛(mg/l)											<0.002	0/2
	へ * ソ セ * ソ (mg/l)											<0.001	0/2
	セ レ ン (mg/l)											<0.001	0/2
-	硝酸性窒素及び亜硝酸性窒素(mg/l)									0.115	<0.02	0.21	0/2
<u></u>	1,4- シ * オ キ サ ン (mg/l)						1			<u> </u>		<0.005	0/2
特	銅 (mg/l)												
殊項	鉄 (溶 解 性) (mg/l)												
目	マンカ゛ン (溶解性) (mg/l)												
_	7 □ Δ (mg/l)												
	E P N (mg/l)											46.53	
	7 I / - // (mg/l)											<0.001	-/2
	クロロホルム (mg/l)											<0.001	-/2
	ホルムアルデヒド (mg/l)											<0.008	-/2
	アンモニア性窒素 (mg/l)									0.45-	(0.7)		,-
	硝酸性窒素(mg/l)									0.105	<0.01	0.2	-/2
	亜 硝 酸 性 窒 素 (mg/l)									0.51	(0.7)	<0.01	-/2
	リン酸性リン (mg/l)									0.01	<0.01	0.03	-/6
	濁 度 (mg/l)	105	470	10000	,-					49	105	10000	
	塩化物イオン(mg/l)	18000	17000	19000	-/6					17417	12000	19000	-/12
	塩 分 濃 度 (‰)									31	23	34	-/6

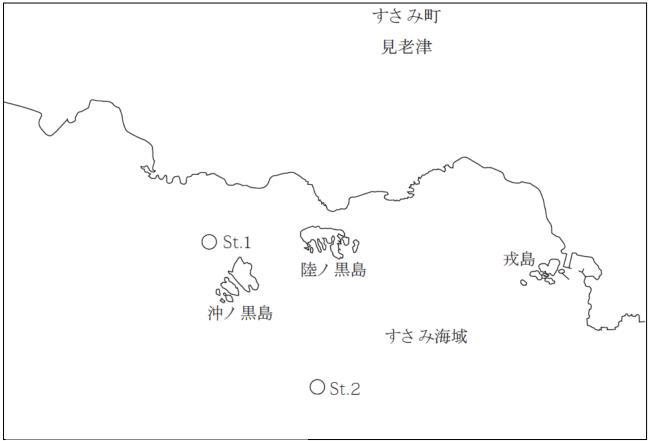
(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名					E	田 辺 洋	弯 海 均	t				
	地 点 名	St.	4(表層)(/	4【基】, II【	基])	St.	4(中層)(/	4【基】, Ⅱ【	基])	St.	4(下層)(/	4【基】, II【	基】)
	測定值測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		8.1	8.2	0/6		8.2	8.3	0/6			8.3	
生	D O (mg/l)	7.9	7.3	8.5	1/6	8.1	7.3	9.1	1/6	7.6	6.7	8.2	2/6
		(1.1)				(<0.5)							
活	C O D (mg/l)	1.1	0.5	1.7	0/6	1.3	1.0	1.6	0/6				
環	S S (mg/l)	2	1	3	-/6	3	1	4	-/6				
境	大 腸 菌 数 (CFU/100ml)	33	0	140	0/6	47	0	270	0/6				
項	N - ヘキ サン 抽 出 物 質 (mg/l)			<0.5	0/6								
	全 窒 素 (mg/l)	0.14	0.06	0.26	0/6	0.18	0.13	0.29	0/6				
目	全 燐 (mg/l)	0.016	0.012	0.021	0/6	0.017	0.011	0.038	0/6				
	全 亜 鉛 (mg/l)	0.003	<0.001	0.011	-/6								
	カ ト ゜ ミ ウ ム (mg/l)			<0.0003	0/2								
	全 シ 7 ン (mg/l)			<0.1	0/2								
	鉛 (mg/l)			<0.005	0/2								
	六 価 ク ロ ム (mg/l)			<0.01	0/2								
	砒 素 (mg/l)	0.001	0.001	0.001	0/2								
	総 水 銀 (mg/l)			<0.0005	0/2								
	アルキル水銀 (mg/l)												
健	P C B (mg/l)			<0.0005	0/2								
	シ * ク ロ ロ メ タ ン (mg/l)			<0.002	0/2								
	四塩化炭素(mg/l)			<0.0002	0/2								
康	1,2- シ ゙ ク ロ ロ エ タ ン (mg/l)			<0.0004	0/2								
	1,1- シ * クロロエチレン (mg/l)			<0.002	0/2								
	シス -1,2- シ゛クロロエチレン (mg/l)			<0.004	0/2								
項	1,1,1-トリクロロエタン (mg/l)			<0.01	0/2								
	1,1,2-トリクロロエタン (mg/l)			<0.0006	0/2								
	トリクロロエチレン (mg/l)			<0.001	0/2								
目	テトラクロロエチレン (mg/l)			<0.001	0/2								
	1,3- シ クロロフ ° ロヘ ° ン (mg/l)			<0.0002	0/2								
	チ ウ ラ ム (mg/l) シ マ シ ・ ン (mg/l)			<0.0006	0/2								
	チオヘ゜ンカルフ゜(mg/l)			<0.0003	0/2								
	へ ・ ン セ ・ ン (mg/l)			<0.002	0/2								
	セ レ ン (mg/l)			<0.001	0/2								
	で			<0.001	0/2								
ŀ	HB T =			<0.02	0/2								
-	銅 (mg/l)			.5.550									
特殊													
項	マンカ ン (溶解性) (mg/l)												
目	7 П Д (mg/l)												
	E P N (mg/l)												
	フェノール (mg/l)			<0.001	-/2								
	クロロホルム (mg/l)			<0.001	-/2								
	ホルムアルデヒド (mg/l)			<0.008	-/2								
	ァッモニァ性 窒 素 (mg/l)												
	硝 酸 性 窒 素 (mg/l)	0.010	<0.01	0.01	-/2								
	亜 硝 酸 性 窒 素 (mg/l)			<0.01	-/2								
	リン酸性リン (mg/l)	0.01	<0.01	0.01	-/6								
	置 度 (mg/l)												
	塩 化 物 イ オ ン (mg/l)	18167	16000	19000	-/6	18500	18000	19000	-/6				
	塩 分 濃 度 (‰)	33	31	35	-/6								
_	"		•				•					•	

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名					E	田 辺 濱	弯 海 均	ţ				
	地 点 名	St.	4(全層) (/	4【基】, Ⅱ【	基])	;	St. 6 (A[*	甫】,Ⅱ【補】)	St.	7(表層) (/	4【基】, 1【	基】)
	測定值	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	х/у
	р Н		8.1	8.3	0/12		8.0	8.2	0/6		8.1	8.2	0/6
生	D O (mg/l)	7.9	6.7	9.1	4/18	7.8	6.3	9.2	1/6	8.1	6.7	9.6	1/6
		(1.3)				(1.3)				(1)			
活	C O D (mg/l)	1.2	0.5	1.7	0/6	1.2	0.6	1.9	0/6	0.9	<0.5	1.9	0/6
環	S S (mg/l)	2	1	4	-/12	3	1	5	-/6	2	<1	4	-/6
境	大 腸 菌 数 (CFU/100ml)	40	0	270	0/12	40	1	110	0/6	4	0	13	0/6
項	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	0/6			<0.5	0/6			<0.5	0/6
目	全 窒 素 (mg/l)	0.16	0.06	0.29	0/12	0.17	0.10	0.25	0/6	0.13	0.09	0.18	0/6
"	全 燐 (mg/l)	0.017	0.011	0.038	0/12	0.019	0.012	0.025	0/6	0.015	0.011	0.024	0/6
_	全 亜 鉛 (mg/l)									0.004	<0.001	0.013	-/6
	カ ト ゜ ミ ウ ム (mg/l)			<0.0003	0/2							<0.0003	0/2
	全 シ ア ン (mg/l)			<0.1	0/2							<0.1	0/2
	鉛 (mg/l)			<0.005	0/2							<0.005	0/2
	六価り口ム (mg/l)	0.00:	6.00:	<0.01	0/2					0.00:	6.00	<0.01	0/2
	砒 素 (mg/l)	0.001	0.001	0.001	0/2					0.001	0.001	0.001	0/2
	総 水 銀 (mg/l)			<0.0005	0/2							<0.0005	0/2
	アルキル水 銀 (mg/l)			(0.0005	0.0							/0.000F	0./0
健	P C B (mg/l) シ ^ ク ロ ロ メ タ ン (mg/l)			<0.0005	0/2							<0.0005	0/2
	シ クロロメタン (mg/l) 四 塩 化 炭 素 (mg/l)			<0.002	0/2					-		<0.002 <0.0002	0/2
	1,2- シ			<0.0002	0/2							<0.0002	0/2
康	1,1- シ クロロエチレン (mg/l)			<0.002	0/2							<0.0004	0/2
	シス -1,2- シ クロロエチレン (mg/l)			<0.004	0/2							<0.004	0/2
	1,1,1- トリクロロエタン (mg/l)			<0.01	0/2							<0.01	0/2
項	1,1,2- トリクロロエタン (mg/l)			<0.0006	0/2							<0.0006	0/2
	トリクロロエチレン (mg/l)			<0.001	0/2							<0.001	0/2
	テトラクロロエチレン (mg/l)			<0.001	0/2							<0.001	0/2
目	1,3- シ			<0.0002	0/2							<0.0002	0/2
	チ ウ ラ ム (mg/l)			<0.0006	0/2							<0.0006	0/2
	シマシ ・ ン (mg/l)			<0.0003	0/2							<0.0003	0/2
	チオへ゛ンカルフ゛(mg/l)			<0.002	0/2							<0.002	0/2
	へ * ン セ * ン (mg/l)			<0.001	0/2							<0.001	0/2
	セ レ ン (mg/l)			<0.001	0/2							<0.001	0/2
	硝酸性窒素及び亜硝酸性窒素(mg/l)			<0.02	0/2							<0.02	0/2
	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/2							<0.005	0/2
特	銅 (mg/l)												
殊	鉄 (溶 解 性) (mg/l)												
項目	マンカ゛ン (溶 解 性) (mg/l)												
_	7 П Д (mg/l)									<u> </u>			
	E P N (mg/l)												
	フェノール (mg/l)			<0.001	-/2							<0.001	-/2
	クロロホルム (mg/l)			<0.001	-/2							<0.001	-/2
	ホルムアルデヒド (mg/l)			<0.008	-/2							<0.008	-/2
	アンモニア性窒素 (mg/l) 一部 酸 性 容 表 (mg/l)	0.010	/0.01	0.01	-/0					0.01	(0.01	0.01	-/0
	研 酸 性 窒 素 (mg/l)	0.010	<0.01	0.01 <0.01	-/2 -/2					0.01	<0.01	0.01	-/2
	亜 硝 酸 性 窒 素 (mg/l) リン 酸 性 リン (mg/l)	0.01	<0.01	0.01	-/2 -/6					0.01	<0.01	<0.01 0.01	-/2 -/6
	リノ酸性リノ (mg/l) 濁 度 (mg/l)	0.01	\0.01	0.01	-/ v					0.01	\0.01	0.01	-70
	塩化物イオン(mg/l)	18333	16000	19000	-/12	18333	17000	19000	-/6	18333	18000	19000	-/6
	塩分濃度(‰)	33	31	35	-/6	34	32	35	-/6	34	33	35	-/6
	/J //成 /文 (/00)	00	01		/ 0	U*	02		/ 0	J-4	- 00	00	<i>,</i> 0

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。


							田 辺	 湾 海 域					
	地 点 名	St. 7	7(中層) (A	【基】, Ⅱ【	基])	St.		4【基】, Ⅱ【		St.	7(全層)(A【基】,Ⅲ【基	基】)
	測定值	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	х/у
	測 定 項 目 P H		8.2	8.3	0/6			8.3			8.1	8.3	0/12
	D O (mg/l)	8.0	7.1	9.5	2/6	7.7	5.7	8.8	2/6	7.9	5.7	9.6	5/18
生	-	(<0.5)								(1.1)			
活	C O D (mg/l)	1.0	<0.5	1.6	0/6					1.0	0.5	1.9	0/6
環	S S (mg/l)	4	<0.5	6	-/6					3	<1	6	-/12
境	大 腸 菌 数 (CFU/100ml)	17	0	84	0/6					11	0	84	0/12
項	N - へ キ サ ン 抽 出 物 質 (mg/l)											<0.5	0/6
	全 窒 素 (mg/l)	0.16	0.08	0.21	0/6					0.14	0.08	0.21	0/12
目	全 燐 (mg/l)	0.014	0.007	0.019	0/6					0.014	0.007	0.024	0/12
	全 亜 鉛 (mg/l)												
	カ ト ゜ ミ ウ ム (mg/l)											<0.0003	0/2
	全 シ ア ン (mg/l)											<0.1	0/2
	鉛 (mg/l)											<0.005	0/2
	六 価 ク ロ ム (mg/l)	-										<0.01	0/2
	砒 素 (mg/l)									0.001	0.001	0.001	0/2
	総 水 銀 (mg/l)											<0.0005	0/2
	アルキル水銀 (mg/l)												
健	P C B (mg/l)											<0.0005	0/2
	シ [*] ク ロ ロ メ タ ン (mg/l)											<0.002	0/2
	四 塩 化 炭 素 (mg/l)											<0.0002	0/2
康	1,2- シ ゚ ク ロ ロ エ タ ン (mg/l)											<0.0004	0/2
	1,1- シ゛クロロェチレン (mg/l)											<0.002	0/2
	シス -1,2- シ゛クロロエチレン (mg/l)											<0.004	0/2
項	1,1,1- トリクロロエタン (mg/l)											<0.01	0/2
	1,1,2- トリクロロエタン (mg/l)											<0.0006	0/2
	トリクロロエチレン (mg/l)											<0.001	0/2
	テトラクロロエチレン (mg/l)											<0.001	0/2
-	1,3- シ * クロロフ ° ロヘ ° ン (mg/l)											<0.0002	0/2
	f f f f f (mg/l)											<0.0006	0/2
	7 Y 7 7 (IIIg/1)											<0.0003	0/2
	チオヘ゜ンカルフ゜(mg/l)											<0.002	0/2
	へ * ソ セ * ソ (mg/l)											<0.001	0/2
	セ レ ン (mg/l)											<0.001	0/2
ŀ	硝酸性窒素及び亜硝酸性窒素(mg/l) 1,4- シ オ キ サ ン (mg/l)											<0.02	0/2
	1,4 ⁻						<u> </u>			<u> </u>		<0.005	0/2
特	野 (Tilg/1) 鉄 (溶 解 性) (mg/l)												
殊項	マンカ [°] ン(溶解性) (mg/l)												
目	7 П Д (mg/l)												
	E P N (mg/l)						<u> </u>			<u> </u>			
	7 I / - N (mg/l)											<0.001	-/2
	クロロホルム (mg/l)											<0.001	-/2
	ホルムアルデヒド (mg/l)											<0.008	-/2
	ア ン モ ニ ア 性 窒 素 (mg/l)												
	硝酸性窒素 (mg/l)									0.01	<0.01	0.01	-/2
	亜 硝 酸 性 窒 素 (mg/l)											<0.01	-/2
	リン酸性リン (mg/l)									0.01	<0.01	0.01	-/6
	濁 度 (mg/l)												
	塩 化 物 イ オ ン (mg/l)	18500	18000	19000	-/6					18417	18000	19000	-/12
	塩 分 濃 度 (‰)									34	33	35	-/6
	u.				х								

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

2-34 すさみ海域水質測定結果

①のとおり2測定点でそれぞれ年6回の測定を実施した。その結果は、②のとおりである。 なお、この海域には環境基準類型をあてはめていない。

① すさみ海域測定点図

- ●C O D 等の環境基準点 ☆T -N 、T -P の環境基準点
- ●COD等かつT-N、T-Pの環境基準点 ○その他の観測点

② すさみ海域水質測定結果一覧

	海 域 名				すさる	み海域			
	地 点 名		St. 1	(-, -)			St. 2	(-, -)	
	測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		8.1	8.2	-/6		8.1	8.2	-/6
生	D O (mg/l)	7.5	6.9	8.2	-/6	7.6	7.1	8.1	-/6
±		(1.4)				(1.4)			
活	C O D (mg/l)	1.3	1.1	1.5	-/6	1.3	1.1	1.5	-/6
環	S S (mg/l)	1	<1	1	-/6	1	<1	1	-/6
境	大 腸 菌 数 (CFU/100ml)	0.2	0	1	-/6	0.0	0	0	-/6
	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	-/6			<0.5	-/6
項	全 窒 素 (mg/l)	0.13	0.08	0.2	-/6	0.12	0.08	0.14	-/6
目	全 燐 (mg/l)	0.012	0.01	0.015	-/6	0.011	0.006	0.014	-/6
	全 亜 鉛 (mg/l)	<0.001	<0.001	<0.001	-/6	<0.001	<0.001	0.001	-/6
	カト ・ ミ ウ ム (mg/l)			<0.0003	0/2			<0.0003	0/2
	全 シ ア ン (mg/l)			<0.1	0/2			<0.1	0/2
	針 (mg/l)			<0.005	0/2			<0.005	0/2
	六 価 ク ロ ム (mg/l)			<0.01	0/2		<u> </u>	<0.01	0/2
	ス 山	0.001	0.001	0.001	0/2	0.001	<0.001	0.001	0/2
	知 来 (mg/l)総 水 銀 (mg/l)	0.001	0.001	<0.0005	0/2	0.001	\U.UU1	<0.001	0/2
				\U.UU00	U/ Z			\U.UUUÐ	0/2
				(0.0005	0./0			/0.000F	0.75
建	P C B (mg/l)			<0.0005	0/2			<0.0005	0/2
	/ H H / / / (IIIg/1)			<0.002	0/2			<0.002	0/2
	四 塩 化 炭 素 (mg/l)			<0.0002	0/2		<u> </u>	<0.0002	0/2
康	1,2- シ [*] ク ロ ロ エ タ ン (mg/l)			<0.0004	0/2		<u> </u>	<0.0004	0/2
	1,1- シ * クロロエチレン (mg/l)			<0.002	0/2			<0.002	0/2
	シス -1,2- シ * クロロエチレン (mg/l)			<0.004	0/2			<0.004	0/2
項	1,1,1- トリクロロエタン (mg/l)			<0.01	0/2			<0.01	0/2
	1,1,2- トリクロロエタン (mg/l)			<0.0006	0/2			<0.0006	0/2
	トリクロロエチレン (mg/l)			<0.001	0/2			<0.001	0/2
╸┃	テトラクロロエチレン (mg/l)			<0.001	0/2			<0.001	0/2
_	1,3- シ゛クロロフ゜ロヘ゜ン (mg/l)			<0.0002	0/2			<0.0002	0/2
	チ ウ ラ ム (mg/l)			<0.0006	0/2			<0.0006	0/2
	シマシ ・ ン (mg/l)			<0.0003	0/2		<u> </u>	<0.0003	0/2
	チオヘ゛ンカルフ゛(mg/l)			<0.002	0/2			<0.002	0/2
	へ ・ ン セ ・ ン (mg/l)			<0.001	0/2			<0.001	0/2
	セ レ ン (mg/l)			<0.001	0/2			<0.001	0/2
	硝酸性窒素及び亜硝酸性窒素(mg/l)			<0.02	0/2			<0.02	0/2
	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/2			<0.005	0/2
持	銅 (mg/l)								
殊	鉄 (溶解性) (mg/l)								
項 目	マンカ [*] ン(溶 解 性) (mg/l)								
	7 П Д (mg/l)								
	E P N (mg/l)								
	フ ェ ノ ー ル (mg/l)			<0.001	-/2			<0.001	-/2
	ク ロ ロ ホ ル ム (mg/l)			<0.001	-/2			<0.001	-/2
	ホルムアルデヒド (mg/l)			<0.008	-/2			<0.008	-/2
	ア ン モ ニ ア 性 窒 素 (mg/l)								
	硝酸性窒素(mg/l)			<0.01	-/2			<0.01	-/2
	亜 酸 性 窒 素 (mg/l)			<0.01	-/2			<0.01	-/2
	リ ン 酸 性 リ ン (mg/l)								
	濁 度 (mg/l)								
	塩 化 物 イ オ ン (mg/l)	18500	18000	19000	-/6	18333	18000	19000	-/6
	塩 分 濃 度 (‰)	34	32	35	-/6	34	33	35	-/6

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

2-35 串本海域水質測定結果

①のとおり7測定点でそれぞれ年6回(2測定点で、中層年6回を含む。)の測定を実施した。そ の結果は、③のとおりである。

この海域の環境基準類型(海域アの部)は、St2,4,5,6にAをあてはめている。

なお、St7,8,9については、環境基準類型をあてはめていない。

CODの75%値でみると、全ての環境基準点で環境基準値(2 mg/1)に適合している。

① 串本海域測定点図

- ●COD等の環境基準点 ☆T-N、T-Pの環境基準点
- ●COD等かつT-N、T-Pの環境基準点 ○その他の観測点

② 串本海域のCOD75%値の推移

③ 串本海域水質測定結果一覧

	海 域 名						串 本	海域					
	地 点 名		St. 2 (A	【補】, 一)		S	St. 4(表層)	(A【基】, -	-)	8	St. 4(中層)	(A【基】, -	-)
	測定値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	<u> </u>		8.1	8.2	0/6		8.1	8.2	0/6		8.1	8.3	0/6
生	D O (mg/l)	7.7	7.2	8.4	3/6	7.7	7.1	8.4	2/6	7.8	7.1	8.3	2/6
		(1.4)				(1.5)				(<0.5)			
活	C O D (mg/l)	1.3	1.1	1.6	0/6	1.4	1.0	1.5	0/6	1.3	0.9	1.4	0/6
環	S S (mg/l)	1	<1	1	-/6	1	<1	1	-/6	1	<0.5	2	-/6
境	大 腸 菌 数 (CFU/100ml)	0	0	1	0/6	0	0	1	0/6	0	0	1	0/6
項	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	0/6			<0.5	0/6				
	全 窒 素 (mg/l)	0.13	0.09	0.18	-/6	0.12	0.09	0.16	-/6	0.11	0.07	0.15	-/6
目	全 燐 (mg/l)	0.011	0.007	0.014	-/6	0.011	0.008	0.014	-/6	0.011	0.006	0.013	-/6
	全 亜 鉛 (mg/l)					0.001	<0.001	0.002	-/6				
	カト ・ ミ ウ ム (mg/l)					0.00035	<0.0003	0.0004	0/2				
	全 シ ア ン (mg/l)							<0.1	0/2				
	鉛 (mg/l)							<0.005	0/2				
	六 価 ク ロ ム (mg/l)							<0.01	0/2				
	砒 素 (mg/l)				_			<0.001	0/2				
	総 水 銀 (mg/l)							<0.0005	0/2				
	ア ル キ ル 水 銀 (mg/l)												
健	P C B (mg/l)							<0.0005	0/2				
	シ [*] ク ロ ロ メ タ ン (mg/l)							<0.002	0/2				
	四塩化炭素(mg/l)							<0.0002	0/2				
康	1,2- シ							<0.0004	0/2				
	1,1- シ [*] クロロエチレン (mg/l)							<0.002	0/2				
	シス -1,2- シ゛クロロエチレン (mg/l)							<0.004	0/2				
項	1,1,1- トリクロロエタン (mg/l)							<0.01	0/2				
	1,1,2- トリクロロエタン (mg/l)							<0.0006	0/2				
	トリクロロエチレン (mg/l)							<0.001	0/2				
	テトラクロロエチレン (mg/l)							<0.001	0/2				
	1,3- シ * クロロフ ° ロヘ ° ン (mg/l)							<0.0002	0/2				
	チ ウ ラ ム (mg/l)							<0.0006	0/2				
	シマシ ・ ン (mg/l)							<0.0003	0/2				
	チ オ へ ゛ ン カ ル フ ゛ (mg/l)							<0.002	0/2				
	へ ・ ン セ ・ ン (mg/l)							<0.001	0/2				
	セレン (mg/l)							<0.001	0/2				
	硝酸性窒素及び亜硝酸性窒素(mg/l)					0.02	<0.02	0.02	0/2				
_	1,4- シ * オ キ サ ン (mg/l)					<u> </u>		<0.005	0/2	<u> </u>			
特	銅 (mg/l)												
殊項	鉄 (溶解性) (mg/l)										-		
目	マンカ゛ン(溶解性)(mg/l)										<u> </u>		
_	7 □ Δ (mg/l)												
	E P N (mg/l)							Z0.001	_ /0				
								<0.001	-/2 -/2		-		
	クロロホルム (mg/l) ホルムアルデヒド (mg/l)							<0.001 <0.008	-/2 -/2				
	ホルムアルテヒト (mg/l) アンモニア性窒素 (mg/l)							∖υ.υ∪8	-/ Z				
	アフモーア性 室 素 (mg/l) 硝 酸 性 窒 素 (mg/l)					0.01	<0.01	0.01	-/2				
	明					0.01	\0.01	<0.01	-/2 -/2				
	型 阪 住 至 系 (mg/l) リン 酸 性 リン (mg/l)							<0.01	-/2 -/6				
								\0.01	/ 0				
	塩 化 物 イ オ ン (mg/l)	17667	17000	19000	-/6	17667	17000	19000	-/6	17833	17000	19000	-/6
	塩分濃度(‰)	32	30	35	-/6	32	31	34	-/6	17000	1,000	10000	70
	<u> </u>	JZ	30	30	/0	JZ	υI	J4	/0	l	1		

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深0.5m、中層は水深2.0m、下層は海底直上1.0mで採水。無表記は表層で採水。

	海 域 名						串 本	海域					
	地 点 名	5	St. 4(下層)	(A【基】, -	-)	S	St. 4(全層)	(A【基】, -	-)		St. 5 (A	【補】, 一)	
	測定值測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	<u> </u>			8.3			8.1	8.3	0/12		8.1	8.2	0/6
ļ_	D O (mg/l)	7.3	6.6	8.3	3/6	7.6	6.6	8.4	7/18	7.8	7.1	8.4	2/6
生						(1.5)				(1.4)			
活	C O D (mg/l)					1.3	0.9	1.5	0/6	1.3	0.9	1.6	0/6
環	S S (mg/l)					1	<1	2	-/12	1	<1	1	-/6
境	大 腸 菌 数 (CFU/100ml)					0	0	1	0/12	0	0	0	0/6
項	N - へ キ サ ン 抽 出 物 質 (mg/l)							<0.5	0/6			<0.5	0/6
	全 窒 素 (mg/l)					0.12	0.07	0.16	-/12	0.12	0.08	0.16	-/6
目	全 燐 (mg/l)					0.011	0.006	0.014	-/12	0.011	0.007	0.013	-/6
	全 亜 鉛 (mg/l)												
	カ ト ° ξ ウ ム (mg/l)					0.00035	<0.0003	0.0004	0/2				
	全 シ ア ン (mg/l)							<0.1	0/2				
	鉛 (mg/l)							<0.005	0/2				
	六 価 ク ロ ム (mg/l)							<0.01	0/2				
	砒 素 (mg/l)							<0.001	0/2				
	総 水 銀 (mg/l)							<0.0005	0/2				
	アルキル水銀 (mg/l)												
健	P C B (mg/l)							<0.0005	0/2				
TXE.	シ [*] ク ロ ロ メ タ ン (mg/l)							<0.002	0/2				
	四 塩 化 炭 素 (mg/l)							<0.0002	0/2				
_	1,2- シ ^ ク ロ ロ エ タ ン (mg/l)							<0.0004	0/2				
康	1,1- シ ^ クロロエチレン (mg/l)							<0.002	0/2				
	シス -1,2- シ゛クロロエチレン (mg/l)							<0.004	0/2				
	1,1,1- トリクロロエタン (mg/l)							<0.01	0/2				
項	1,1,2- トリクロロエタン (mg/l)							<0.0006	0/2				
	トリクロロエチレン (mg/l)							<0.001	0/2				
	テトラクロロエチレン (mg/l)							<0.001	0/2				
目	1,3- シ							<0.0002	0/2				
	チ ウ ラ ム (mg/l)							<0.0006	0/2				
	シ マ シ ゜ ン (mg/l)							<0.0003	0/2				
	チオへ゛ンカルフ゛(mg/l)							<0.002	0/2				
	へ ・ ン セ ・ ン (mg/l)							<0.001	0/2				
	セレン (mg/l)							<0.001	0/2				
	硝酸性窒素及び亜硝酸性窒素(mg/l)					0.02	<0.02	0.02	0/2				
	1,4- シ ・ オ キ サ ン (mg/l)							<0.005	0/2				
	銅 (mg/l)												
特殊	鉄 (溶 解 性) (mg/l)												
項	マンカ [*] ン (溶 解 性) (mg/l)												
目	7 □ Д (mg/l)												
	E P N (mg/l)												
	フ ェ ノ ー ル (mg/l)							<0.001	-/2				
	クロロホルム (mg/l)							<0.001	-/2				
	ホルムアルデヒド (mg/l)							<0.008	-/2				
	ア ン モ ニ ア 性 窒 素 (mg/l)												
	硝酸性窒素 (mg/l)					0.01	<0.01	0.01	-/2				
	亜 酸 性 窒 素 (mg/l)							<0.01	-/2				
	リン酸性リン (mg/l)							<0.01	-/6				
	濁 度 (mg/l)												
	塩 化 物 イ オ ン (mg/l)					17750	17000	19000	-/12	17833	17000	19000	-/6
	塩 分 濃 度 (‰)					32	31	34	-/6	33	31	35	-/6
			1		3	l	3				1	В	

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

海 域 名						串本	海 域					
地 点 名	S	it. 6(表層)	(A【基】, -	-)	S	St. 6(中層)	(A【基】, -	-)	S	St. 6(全層)	(A【基】, -	-)
測定值	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
р Н		8.1	8.3	0/6		8.1	8.3	0/6		8.1	8.3	0/12
生 D O (mg/l)	7.7	7.1	8.3	3/6	7.6	7.0	8.3	3/6	7.6	7.0	8.3	5/12
	(1.4)				(<0.5)				(1.4)			
活 C O D (mg/l)	1.3	1.0	1.6	0/6	1.3	1.1	1.6	0/6	1.3	1.0	1.6	0/6
環 S S (mg/l)	1	<1	2	-/6	1	<0.5	2	-/6	1	<1	2	-/12
境 大 腸 菌 数 (CFU/100ml)	1	0	3	0/6	1	0	2	0/6	1	0	3	0/12
項 N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	0/6							<0.5	0/6
全 窒 素 (mg/l)	0.13	0.08	0.20	-/6	0.12	0.08	0.16	-/6	0.12	0.08	0.20	-/12
目 全 燐 (mg/l)	0.012	0.010	0.013	-/6	0.011	0.008	0.013	-/6	0.011	0.008	0.013	-/12
全 亜 鉛 (mg/l)	0.002	<0.001	0.005	-/6								
カ ト ゜ ミ ウ ム (mg/l)	0.0003	<0.0003	0.0003	0/2					0.0003	<0.0003	0.0003	0/2
全 シ ア ン (mg/l)			<0.1	0/2							<0.1	0/2
鉛 (mg/l)			<0.005	0/2							<0.005	0/2
六 価 ク ロ ム (mg/l)			<0.01	0/2							<0.01	0/2
砒 素 (mg/l)			<0.001	0/2							<0.001	0/2
総 水 銀 (mg/l)			<0.0005	0/2							<0.0005	0/2
ア ル キ ル 水 銀 (mg/l)												
(mg/l) P C B (mg/l)			<0.0005	0/2							<0.0005	0/2
シ * ク ロ ロ メ タ ン (mg/l)			<0.002	0/2							<0.002	0/2
四塩化炭素(mg/l)			<0.0002	0/2							<0.0002	0/2
康 1,2- シ			<0.0004	0/2							<0.0004	0/2
1,1- シ			<0.002	0/2							<0.002	0/2
シス -1,2- シ ゙ クロロエチレン (mg/l)			<0.004	0/2							<0.004	0/2
1,1,1-トリクロロエタン (mg/l) 項			<0.01	0/2							<0.01	0/2
1,1,2-トリクロロエタン (mg/l)			<0.0006	0/2							<0.0006	0/2
トリクロロエチレン (mg/l)			<0.001	0/2							<0.001	0/2
目			<0.001	0/2							<0.001	0/2
			<0.0002 <0.0006	0/2							<0.0002 <0.0006	0/2
チ ウ ラ ム (mg/l) シ マ シ ・ ン (mg/l)			<0.0003	0/2							<0.0003	0/2
チ オ へ ゜ン カ ル フ ゜ (mg/l)			<0.0003	0/2							<0.0003	0/2
へ ・ ン セ ・ ン (mg/l)			<0.001	0/2							<0.001	0/2
セ レ ン (mg/l)			<0.001	0/2							<0.001	0/2
- (mg/n) -	0.02	<0.02	0.02	0/2					0.02	<0.02	0.02	0/2
1,4- > * * * * * * * * * * * * * * * * * *			<0.005	0/2							<0.005	0/2
銅 (mg/l)												
特												
項 マンカ・ン (溶 解 性) (mg/l)												
目 クロム (mg/l)												
E P N (mg/l)												
フェノ — ル (mg/l)			<0.001	-/2							<0.001	-/2
クロロホルム (mg/l)			<0.001	-/2							<0.001	-/2
ホルムアルデヒド (mg/l)			<0.008	-/2							<0.008	-/2
ア ン モ ニ ア 性 窒 素 (mg/l)												
硝 酸 性 窒 素 (mg/l)	0.01	<0.01	0.01	-/2					0.01	<0.01	0.01	-/2
亜 酸 性 窒 素 (mg/l)			<0.01	-/2							<0.01	-/2
リン酸性リン (mg/l)			<0.01	-/6							<0.01	-/6
濁 度 (mg/l)												
塩 化 物 イ オ ン (mg/l)	18000	17000	19000	-/6	17667	17000	19000	-/6	17833	17000	19000	-/12
塩 分 濃 度 (‰)	33	31	35	-/6					33	31	35	-/6

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名					串本	海域(ラムサ -	- ル)				
	地 点 名		St. 7	(-, -)			St. 8	(-, -)			St. 9	(-, -)	
	測定值	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	х/у
	測 定 項 目 P H		8.1	8.2	-/6		8.1	8.3	-/6		8.1	8.3	-/6
<u>_</u>	D O (mg/l)	7.7	6.9	8.4	-/6	7.6	7.0	8.1	-/6	7.5	7.0	8.0	-/6
生		(1.4)				(1.3)				(1.5)			
活	C O D (mg/l)	1.3	0.9	1.5	-/6	1.3	1.0	1.5	-/6	1.3	1.0	1.5	-/6
環	S S (mg/l)	1	<1	1	-/6	1	<1	1	-/6	1	<1	1	-/6
境	大 腸 菌 数 (CFU/100ml)	0	0	1	-/6	0	0	0	-/6	1	0	2	-/6
項	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	-/6			<0.5	-/6			<0.5	-/6
	全 窒 素 (mg/l)	0.12	0.06	0.21	-/6	0.12	0.07	0.16	-/6	0.14	0.07	0.24	-/6
目	全 燐 (mg/l)	0.012	0.009	0.019	-/6	0.011	0.009	0.014	-/6	0.014	0.010	0.021	-/6
	全 亜 鉛 (mg/l)	0.001	<0.001	0.001	-/6	0.003	<0.001	0.009	-/6	0.002	<0.001	0.004	-/6
	カ ト ・ ミ ウ ム (mg/l)	0.00035	<0.0003	0.0004	0/2	0.0003	<0.0003	0.0003	0/2			<0.0003	0/2
	全 シ ア ン (mg/l)			<0.1	0/2			<0.1	0/2			<0.1	0/2
	鉛 (mg/l)			<0.005	0/2			<0.005	0/2			<0.005	0/2
	六 価 ク ロ ム (mg/l)			<0.01	0/2			<0.01	0/2			<0.01	0/2
	砒 素 (mg/l)	0.001	<0.001	0.001	0/2			<0.001	0/2	0.001	<0.001	0.001	0/2
	総 水 銀 (mg/l)			<0.0005	0/2			<0.0005	0/2			<0.0005	0/2
	ア ル キ ル 水 銀 (mg/l)												
健	P C B (mg/l)			<0.0005	0/2			<0.0005	0/2			<0.0005	0/2
	シ * ク ロ ロ メ タ ン (mg/l)			<0.002	0/2			<0.002	0/2			<0.002	0/2
	四塩化炭素(mg/l)			<0.0002	0/2			<0.0002	0/2			<0.0002	0/2
康	1,2- シ			<0.0004	0/2			<0.0004	0/2			<0.0004	0/2
	1,1- シ			<0.002	0/2			<0.002	0/2			<0.002	0/2
	シス -1,2- シ゛クロロエチレン (mg/l)			<0.004	0/2			<0.004	0/2			<0.004	0/2
項	1,1,1- トリクロロエタン (mg/l)			<0.01	0/2			<0.01	0/2			<0.01	0/2
	1,1,2- トリクロロエタン (mg/l)			<0.0006	0/2			<0.0006	0/2			<0.0006	0/2
	トリクロロエチレン (mg/l)			<0.001	0/2			<0.001	0/2			<0.001	0/2
目	テトラクロロエチレン (mg/l)			<0.001	0/2			<0.001	0/2			<0.001	0/2
	1,3- シ			<0.0002	0/2			<0.0002	0/2			<0.0002	0/2
	チ ウ ラ Δ (mg/l) シ マ シ ・ ン (mg/l)			<0.0006	0/2 0/2			<0.0006	0/2			<0.0006 <0.0003	0/2
	シマシ ン (mg/l) チオヘ ンカルフ (mg/l)			<0.0003	0/2			<0.0003	0/2			<0.0003	0/2
	へ ・ ン セ ・ ン (mg/l)			<0.002	0/2			<0.002	0/2			<0.002	0/2
	セ レ ン (mg/l)			<0.001	0/2			<0.001	0/2			<0.001	0/2
		0.02	<0.02	0.02	0/2			<0.001	0/2	0.02	<0.02	0.02	0/2
ŀ	1,4- シ * オ キ サ ン (mg/l)	3.02	.0.02	<0.005	0/2			<0.02	0/2	3.02	.0.02	<0.005	0/2
	銅 (mg/l)				· -								
特殊	鉄 (溶 解 性) (mg/l)												
項	マンカ [*] ン(溶解性)(mg/l)												
目	ク ロ ム (mg/l)												
	E P N (mg/l)												
	フ ェ ノ ー ル (mg/l)			<0.001	-/2			<0.001	-/2			<0.001	-/2
	クロロホルム (mg/l)			<0.001	-/2			<0.001	-/2			<0.001	-/2
	ホルムアルデヒド (mg/l)			<0.008	-/2			<0.008	-/2			<0.008	-/2
	ア ン モ ニ ア 性 窒 素 (mg/l)												
	硝 酸 性 窒 素 (mg/l)	0.01	<0.01	0.01	-/2			<0.01	-/2	0.01	<0.01	0.01	-/2
	亜 酸 性 窒 素 (mg/l)			<0.01	-/2			<0.01	-/2			<0.01	-/2
	リン酸性リン (mg/l)												
	濁 度 (mg/l)												
	塩 化 物 イ オ ン (mg/l)	18333	18000	19000	-/6	18500	18000	19000	-/6	18000	17000	19000	-/6
1	塩 分 濃 度 (‰)	34	33	35	-/6	34	33	35	-/6	34	32	35	-/6

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

2-36 勝浦湾海域水質測定結果

①のとおり4測定点でそれぞれ年6回(2測定点で、中層年6回を含む。)の測定を実施した。その結果は、③のとおりである。

この海域の環境基準類型(海域アの部)は、勝浦港区(St6)にB、その他の海域(St2,3,5)にAをあてはめている。

CODの 75%値でみると、全ての環境基準点で環境基準値(A:2~mg/1、B:3~mg/1)に適合している。

- ●COD等の環境基準点 ☆T-N、T-Pの環境基準点
- ●COD等かつT-N、T-Pの環境基準点 ○その他の観測点

② 勝浦湾海域のCOD75%値の推移

③ 勝浦湾海域水質測定結果一覧

\vdash	海 域 名						勝浦濱	9 海 域					
1	地 点 名		St. 2 (A	【補】, 一)		S	t. 3(表層)	(A【基】, -	-)	S	St. 3(中層)	(A【基】,一)
	測定値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		8.1	8.2	0/6		8.1	8.2	0/6		8.1	8.2	0/6
生	D O (mg/l)	7.6	6.6	8.2	2/6	7.5	6.5	8.3	2/6	7.6	6.8	8.5	2/6
		(1.5)				(1.5)				(<0.5)			
活	C O D (mg/l)	1.4	1.1	1.6	0/6	1.3	0.9	1.6	0/6	1.3	0.9	1.6	0/6
環	S S (mg/l)	1	1	1	-/6	1	<1	2	-/6	1	<0.5	1	-/6
境	大 腸 菌 数 (CFU/100ml)	8	0	41	0/6	1	0	2	0/6	2	0	8	0/6
項	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	0/6			<0.5	0/6				
目	全 窒 素 (mg/l)	0.14	0.11	0.21	-/6	0.13	0.10	0.20	-/6	0.12	0.08	0.16	-/6
	全 燐 (mg/l)	0.013	0.010	0.015	-/6	0.012	0.010	0.014	-/6	0.011	0.010	0.014	-/6
_	全 亜 鉛 (mg/l)					0.001	<0.001	0.002	-/6				
	カ ト ゜ ミ ウ ム (mg/l)							<0.0003	0/2				
	全 シ ア ン (mg/l)							<0.1	0/2				
	鉛 (mg/l)							<0.005	0/2				
	六 価 ク ロ ム (mg/l)							<0.01	0/2				
	砒 素 (mg/l)							<0.001	0/2				
	総 水 銀 (mg/l)							<0.0005	0/2				
	アルキル水銀 (mg/l)												
健	P C B (mg/l)							<0.0005	0/2				
	シ * ク ロ ロ メ タ ン (mg/l)							<0.002	0/2				
	四塩化炭素(mg/l)							<0.0002	0/2				
康	1,2- シ * ク ロ ロ エ タ ン (mg/l)							<0.0004	0/2				
	1,1- シ * クロロエチレン (mg/l)							<0.002	0/2				
ĺ	シス -1,2- シ゛クロロエチレン (mg/l)							<0.004	0/2				
項	1,1,1- トリクロロエタン (mg/l)							<0.01	0/2				
	1,1,2- トリクロロエタン (mg/l)							<0.0006	0/2				
	トリクロロエチレン (mg/l)							<0.001	0/2				
目	テトラクロロエチレン (mg/l)							<0.001	0/2				
	1,3- シ							<0.0002	0/2				
	チ ウ ラ ム (mg/l) シ マ シ ・ ン (mg/l)							<0.0006 <0.0003	0/2				
	チ オ へ ゛ン カ ル フ ゛ (mg/l)							<0.002	0/2				
	へ * ン セ * ン (mg/l)							<0.001	0/2				
	セ レ ン (mg/l)							<0.001	0/2				
	研酸性窒素及び亜硝酸性窒素(mg/l)					0.02	<0.02	0.02	0/2				
ľ	HR					5.52	.0.02	<0.005	0/2				
	銅 (mg/l)												
特殊	鉄 (溶 解 性) (mg/l)												
項	マンカ [*] ン(溶解性)(mg/l)												
目	ク ロ ム (mg/l)												
	E P N (mg/l)												
	フ ェ ノ ー ル (mg/l)							<0.001	-/2				
	クロロホルム (mg/l)							<0.001	-/2				
	ホルムアルデヒド (mg/l)							<0.008	-/2				
	ア ン モ ニ ア 性 窒 素 (mg/l)												
	硝 酸 性 窒 素 (mg/l)					0.01	<0.01	0.01	-/2				
	亜 酸 性 窒 素 (mg/l)							<0.01	-/2				
	リン酸性リン (mg/l)							<0.01	-/6				
	濁 度 (mg/l)												
	塩 化 物 イ オ ン (mg/l)	17667	17000	19000	-/6	17667	17000	19000	-/6	17667	17000	19000	-/6
	塩 分 濃 度 (‰)	32	30	35	-/6	32	30	35	-/6				

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値表層は水深0.5m、中層は水深2.0m、下層は海底直上1.0mで採水。無表記は表層で採水。

	海 域 名						勝浦湾	弯 海 域					
	地 点 名	5	St. 3(下層)	(A【基】,-	-)	s	t. 3(全層)	(A【基】, -	-)		St. 5 (A	【補】, 一)	
	測定值測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н			8.2			8.1	8.2	0/12		8.1	8.2	0/6
生	D O (mg/l)	7.4	6.3	8.0	2/6	7.5	6.3	8.5	6/18	7.8	6.8	8.7	2/6
						(1.6)				(1.5)			
活	C O D (mg/l)					1.3	0.9	1.6	0/6	1.4	1.1	1.7	0/6
環	S S (mg/l)					1	<1	2	-/12	1	<1	1	-/6
境	大 腸 菌 数 (CFU/100ml)					2	0	8	0/12	0	0	1	0/6
項	N - へ キ サ ン 抽 出 物 質 (mg/l)							<0.5	0/6			<0.5	0/6
目	全 窒 素 (mg/l)					0.13	0.08	0.20	-/12	0.12	0.08	0.16	-/6
	全 燐 (mg/l)					0.012	0.010	0.014	-/12	0.012	0.009	0.014	-/6
	全 亜 鉛 (mg/l)												
	カト゜ミウム (mg/l)							<0.0003	0/2				
	全 シ ア ン (mg/l)							<0.1	0/2				
	鉛 (mg/l)							<0.005	0/2				
	六 価 ク ロ ム (mg/l)							<0.01	0/2				
	砒 素 (mg/l)							<0.001	0/2				
	総 水 銀 (mg/l)							<0.0005	0/2				
	ア ル キ ル 水 銀 (mg/l)												
健	P C B (mg/l)							<0.0005	0/2				
	シ * ク ロ ロ メ タ ン (mg/l)							<0.002	0/2				
	四塩化炭素(mg/l)							<0.0002	0/2				
康	1,2- シ * クロロエタン (mg/l)							<0.0004	0/2				
	1,1- シ * クロロエチレン (mg/l)							<0.002	0/2				
	シス -1,2- シ゛クロロエチレン (mg/l)							<0.004	0/2				
項	1,1,1-トリクロロエタン (mg/l)							<0.01	0/2				
	1,1,2-トリクロロエタン (mg/l)							<0.0006	0/2				
	トリクロロエチレン (mg/l)							<0.001	0/2				
目	テトラクロロエチレン (mg/l)							<0.001	0/2				
	1,3- シ * ク ロ ロ フ * ロ へ * ン (mg/l)							<0.0002 <0.0006	0/2				
	チ ウ ラ ム (mg/l) シ マ シ ・ ン (mg/l)							<0.0008	0/2				
	チ オ へ ゛ン カ ル フ ゛ (mg/l)			-				<0.0003	0/2				
	7 1 ペ フ ガ ル ノ (mg/l) へ ・ ン セ ・ ン (mg/l)							<0.002	0/2				
								<0.001	0/2				
	セ レ ン (mg/l) 硝酸性窒素及び亜硝酸性窒素(mg/l)					0.02	<0.02	0.001	0/2				
}						3.02	\U.UZ	<0.005	0/2				
	銅 (mg/l)					<u> </u>		.5.000		<u> </u>			
特殊	鉄 (溶 解 性) (mg/l)												
項	マンカ ン (溶解性) (mg/l)												
目	7 П Д (mg/l)												
	E P N (mg/l)												
	フェノール (mg/l)							<0.001	-/2				
	クロロホルム (mg/l)							<0.001	-/2				
	ホルムアルデヒド (mg/l)							<0.008	-/2				
	ア ン モ ニ ア 性 窒 素 (mg/l)												
	硝 酸 性 窒 素 (mg/l)					0.01	<0.01	0.01	-/2				
	亜 酸 性 窒 素 (mg/l)							<0.01	-/2				
	リン酸性リン (mg/l)							<0.01	-/6				
	濁 度 (mg/l)												
	塩 化 物 イ オ ン (mg/l)					17667	17000	19000	-/12	18000	17000	19000	-/6
	塩 分 濃 度 (‰)					32	30	35	-/6	33	31	35	-/6
			•										

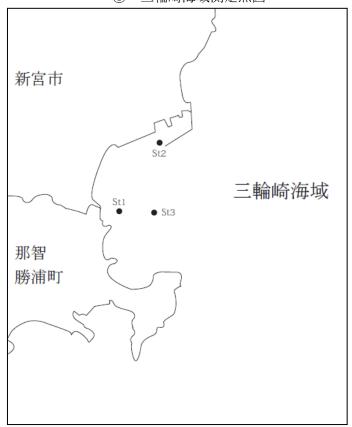
(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名						勝浦濱	弯海 域					
	地 点 名	s	t. 6(表層)	(B【基】, -	-)	S	t. 6(中層)	(B【基】, -	-)	S	t. 6(下層)	(B【基】, -	-)
	測定值測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		8.1	8.2	0/6		8.1	8.2	0/6			8.2	
生	D O (mg/l)	8.0	6.8	9.5	0/6	8.1	6.9	9.7	0/6	7.6	6.8	8.3	0/6
		(1.7)				(<0.5)							
活	C O D (mg/l)	1.5	1.2	1.9	0/6	1.6	1.3	2.0	0/6				
環	S S (mg/l)	1	1	2	-/6	1	1	1	-/6				
境	大 腸 菌 数 (CFU/100ml)	4	0	11	5/6	3	0	6	6/6				
項	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	0/6								
目	全 窒 素 (mg/l)	0.16	0.09	0.27	-/6	0.14	0.09	0.21	-/6				
-	全 燐 (mg/l)	0.014	0.010	0.017	-/6	0.013	0.010	0.015	-/6				
	全 亜 鉛 (mg/l)	0.001	<0.001	0.001	-/6								
	カ ト ゜ ミ ウ ム (mg/l)			<0.0003	0/2								
	全 シ ア ン (mg/l)			<0.1	0/2								
	鉛 (mg/l)			<0.005	0/2								
	六価クロム (mg/l)			<0.01	0/2								
	础 素 (mg/l)			<0.001	0/2								
	総 水 銀 (mg/l)			<0.0005	0/2								
	アルキル水 銀 (mg/l)			(0.0005	0.70					-			
健	P C B (mg/l) シ * ク ロ ロ メ タ ン (mg/l)			<0.0005	0/2								
	四塩化炭素(mg/l)			<0.002 <0.0002	0/2								
	1,2- シ [*] クロロエタン (mg/l)			<0.0002	0/2								
康	1,1- シ クロロエチレン (mg/l)			<0.0004	0/2								
	シス -1,2- シ クロロエチレン (mg/l)			<0.004	0/2								
	1,1,1-トリクロロエタン (mg/l)			<0.01	0/2								
項	1,1,2- トリクロロエタン (mg/l)			<0.0006	0/2								
	トリクロロエチレン (mg/l)			<0.001	0/2								
	テトラクロロエチレン (mg/l)			<0.001	0/2								
目	1,3- シ ^ クロロフ ゜ロヘ゜ン (mg/l)			<0.0002	0/2								
	チ ウ ラ ム (mg/l)			<0.0006	0/2								
	シ マ シ ゜ ン (mg/l)			<0.0003	0/2								
	チオへ゛ンカルフ゛(mg/l)			<0.002	0/2								
	へ ・ ソ セ ・ ソ (mg/l)			<0.001	0/2								
	セ レ ン (mg/l)			<0.001	0/2								
	硝酸性窒素及び亜硝酸性窒素(mg/l)	0.02	<0.02	0.02	0/2								
_	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/2								
特	銅 (mg/l)												
殊	鉄 (溶 解 性) (mg/l)												
項目	マンカ゛ン(溶解性)(mg/l)												
<u> </u>	ク □ Δ (mg/l)												
	E P N (mg/l)			(0.05 :	/5								
	7 I / - 1 (mg/l)			<0.001	-/2								
	クロロホルム (mg/l) ま !!			<0.001	-/2 -/2								
	ホルムアルデヒド (mg/l) アンモニア性窒素 (mg/l)			<0.008	-/2								
	「	0.01	<0.01	0.01	-/2								
	更酸性窒素(mg/l)	5.01	\U.U1	<0.01	-/2								
	型 版 住 里 系 (ilig/l) リン 酸 性 リン (mg/l)			<0.01	-/6								
					/ •								
	塩 化 物 イ オ ン (mg/l)	17667	17000	19000	-/6	17666.67	17000	19000	-/6				
	塩 分 濃 度 (‰)	32	31	34	-/6	,	,	34					
	/ /// /		<u> </u>	١ .	, ,	l				I	1		

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海域名		勝浦濱	海 域	
	地 点 名	s	t. 6(全層)	(B【基】, -	-)
	測 定 値	平均	最小値	最大値	x/y
	測 定 項 目 p H		8.1	8.2	0/12
l	D O (mg/l)	7.9	6.8	9.7	0/18
生		(1.7)			
活	C O D (mg/l)	1.5	1.2	2.0	0/6
環	S S (mg/l)	1	1	2	-/12
境	大 腸 菌 数 (CFU/100ml)	3	0	11	10/12
項	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	0/6
垻	全 窒 素 (mg/l)	0.15	0.09	0.27	-/12
目	全 燐 (mg/l)	0.013	0.010	0.017	-/12
	全 亜 鉛 (mg/l)				
	ክ ⊦ ំ ≷ ኃ ᠘ (mg/l)			<0.0003	0/2
	全 シ ア ン (mg/l)			<0.1	0/2
	鉛 (mg/l)			<0.005	0/2
	六 価 ク ロ ム (mg/l)			<0.01	0/2
	砒 素 (mg/l)			<0.001	0/2
	総 水 銀 (mg/l)			<0.0005	0/2
	ア ル キ ル 水 銀 (mg/l)				
健	P C B (mg/l)			<0.0005	0/2
	シ [*] ク ロ ロ メ タ ン (mg/l)			<0.002	0/2
	四 塩 化 炭 素 (mg/l)			<0.0002	0/2
康	1,2- シ [*] クロロエタン (mg/l)			<0.0004	0/2
1.7	1,1- シ [*] クロロエチレン (mg/l)			<0.002	0/2
	シス -1,2- シ゜クロロェチレン (mg/l)			<0.004	0/2
項	1,1,1- トリクロロエタン (mg/l)			<0.01	0/2
内	1,1,2- トリクロロエタン (mg/l)			<0.0006	0/2
	トリクロロエチレン (mg/l)			<0.001	0/2
	テトラクロロエチレン (mg/l)			<0.001	0/2
目	1,3- シ゛クロロフ゜ロヘ゜ン (mg/l)			<0.0002	0/2
	チ ウ ラ ム (mg/l)			<0.0006	0/2
	シマシ ・ ン (mg/l)			<0.0003	0/2
	チオヘ゛ンカルフ゛(mg/l)			<0.002	0/2
	へ * ソ セ * ソ (mg/l)			<0.001	0/2
	セ レ ン (mg/l)			<0.001	0/2
	硝酸性窒素及び亜硝酸性窒素(mg/l)	0.02	<0.02	0.02	0/2
	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/2
特	銅 (mg/l)				
殊項	鉄 (溶 解 性) (mg/l)				
目	マンカ゜ン (溶解性) (mg/l)				
	<i>γ</i> □ Δ (mg/l)				
	E P N (mg/l)			Z0.001	_ /0
	フェノール (mg/l) クロロホルム (mg/l)			<0.001	-/2 -/2
	クロロホルム (mg/l) ホルムアルデヒド (mg/l)			<0.001	-/2 -/2
	アンモニア性窒素 (mg/l)			\0.000	/ 2
	7 フェー 7 注 室 系 (mg/l) 硝 酸 性 窒 素 (mg/l)	0.01	<0.01	0.01	-/2
	班 酸 性 窒 素 (mg/l)	0.01	\0.01	<0.01	-/2 -/2
	単 版 圧 差 条 (IIIg/I) リン 酸 性 リン (mg/I)			<0.01	-/2 -/6
				\0.01	/ 0
	塩 化 物 イ オ ン (mg/l)	17667	17000	19000	-/12
	塩分濃度(‰)	32	31	34	-/6
			<u> </u>	٠.	, ,

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。


2-37 三輪崎海域水質測定結果

①のとおり3測定点でそれぞれ年6回(3測定点で、中層年6回を含む。)の測定を実施した。その結果は、3のとおりである。

この海域の環境基準類型(海域アの部)は、佐野川の祓川(はらいがわ)橋梁を中心に半径1,000 mの海域及び三輪崎漁港区(St1,2)にB、その他の海域(St3)にAをあてはめている。

CODの 75%値でみると、全ての環境基準点で環境基準値(A:2~mg/1、B:3~mg/1)に適合している。

① 三輪崎海域測定点図

●C O D 等の環境基準点 ☆T -N、T -P の環境基準点 ●C O D 等かつT -N、T -P の環境基準点 ○その他の観測点

② 三輪崎海域のCOD75%値の推移

③ 三輪崎海域水質測定結果一覧

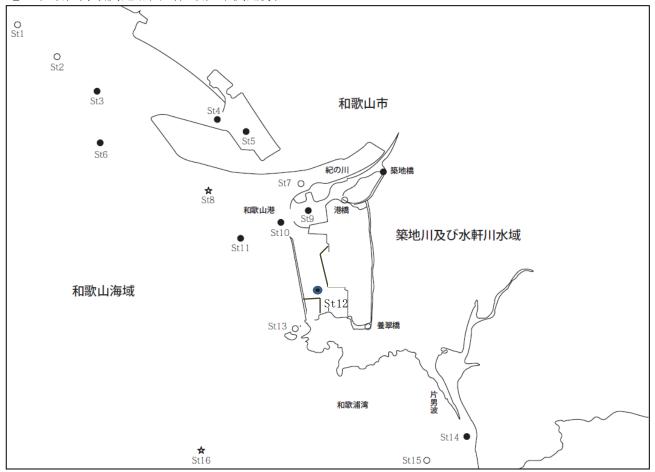
	海 域 名						三輪崎	奇 海 域					
	地 点 名	s	t. 1(表層)	(B【基】, -	-)	s	t. 1(中層)	(B【基】, -	-)	S	st. 1(下層)	(B【基】, -	-)
	測定値	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	<u>д с д г</u>		8.1	8.2	0/6		8.1	8.2	0/6			8.2	
生	D O (mg/l)	7.9	7.1	8.5	0/6	7.8	7.0	8.9	0/6	7.6	6.4	8.3	0/6
		(1.6)				(<0.5)							
活	C O D (mg/l)	1.5	1.2	1.7	0/6	1.4	1.2	1.5	0/6				
環	S S (mg/l)	1	1	1	-/6	1	1	2	-/6				
境	大 腸 菌 数 (CFU/100ml)	4	0	23	4/6	2	0	4	4/6				
項	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	0/6								
目	全 窒 素 (mg/l)	0.14	0.09	0.23	-/6	0.12	0.08	0.16	-/6				
	全 燐 (mg/l)	0.012	0.010	0.014	-/6	0.011	0.009	0.012	-/6				
	全 亜 鉛 (mg/l)	0.001	<0.001	0.002	-/6								
	カ ト ゜ ミ ウ ム (mg/l)			<0.0003	0/2								
	全 シ ア ン (mg/l)			<0.1	0/2								
	鉛 (mg/l)			<0.005	0/2								
	六価クロム (mg/l)			<0.01	0/2								
	砒 素 (mg/l)			<0.001	0/2								
	総 水 銀 (mg/l)			<0.0005	0/2								
	アルキル水 銀 (mg/l)										-		
健	P C B (mg/l)			<0.0005	0/2								
	シ * ク ロ ロ メ タ ン (mg/l)四 塩 化 炭 素 (mg/l)			<0.002	0/2								
	回 塩 1C 灰 糸 (mg/l) 1,2- シ			<0.0002	0/2								
康	1,1- シ クロロエチレン (mg/l)			<0.0004	0/2								
	シス -1,2- シ クロロエチレン (mg/l)			<0.002	0/2								
	1,1,1- トリクロロエタン (mg/l)			<0.01	0/2								
項	1,1,2- トリクロロエタン (mg/l)			<0.0006	0/2								
	トリクロロエチレン (mg/l)			<0.001	0/2								
	テトラクロロエチレン (mg/l)			<0.001	0/2								
目	1,3- シ クロロフ ゚ロヘ ゚ン (mg/l)			<0.0002	0/2								
	チ ウ ラ ム (mg/l)			<0.0006	0/2								
	シ マ シ ゜ ン (mg/l)			<0.0003	0/2								
	チオヘ゜ンカルフ゜(mg/l)			<0.002	0/2								
	へ ・ ン セ ・ ン (mg/l)			<0.001	0/2								
	セ レ ン (mg/l)			<0.001	0/2								
	硝酸性窒素及び亜硝酸性窒素(mg/l)	0.02	<0.02	0.02	0/2								
	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/2								
特	銅 (mg/l)												
殊	鉄 (溶 解 性) (mg/l)												
項目	マンカ [*] ン(溶 解 性) (mg/l)												
Ĺ	7 П Д (mg/l)												
	E P N (mg/l)												
	7 I / - // (mg/l)			<0.001	-/2								
	クロロホルム (mg/l)			<0.001	-/2								
	ホルムアルデヒド (mg/l)			<0.008	-/2								
	アンモニア性窒素 (mg/l)	0.01	(0.01	001	/0						-		
	硝酸性窒素 (mg/l)	0.01	<0.01	0.01	-/2								
	亜酸性窒素 (mg/l)			<0.01	-/2 -/6						 		
	リン酸性リン (mg/l) 湯 度 (mg/l)			<0.01	-/6								
	濁 度 (mg/l) 塩 化 物 イ オ ン (mg/l)	17333	16000	19000	-/6	17667	16000	19000	_/R				
	塩 1C 物 1 1 7 (mg/l) 塩 分 濃 度 (‰)	32	29	35	-/6 -/6	1/00/	10000	1 9000	-/6				
	·皿 /J /辰 /爻 (700)	JZ	29	30	-/0					<u> </u>	1		

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

測定項目 平均 最小値 最大値 x/y 平均 最小値 表土 占 D O (mg/l) 7.8 6.4 8.9 0/18 7.6 6.6 8.5 0/6 7.6 6.5 活 C O D (mg/l) 1.4 1.2 1.7 0/6 1.5	8.2 8.6 1.8 3	x/y 0/6 0/6
測定項目 平均 販小値 販人値 x/y 平均 販小値 販人値 x/y 平均 販小値 4 p H 8.1 8.2 0/12 8.1 8.2 0/6 8.1 5 D O (mg/l) 7.8 6.4 8.9 0/18 7.6 6.6 8.5 0/6 7.6 6.5 6 C O D (mg/l) 1.4 1.2 1.7 0/6 1.5 1.3 1.7 0/6 1.4 1.2 1 S S (mg/l) 1 <1 2 -/12 1 <1 2 -/6 2 1	8.2	0/6
中 H 8.1 8.2 0/12 8.1 8.2 0/6 8.1 生 D O (mg/l) 7.8 6.4 8.9 0/18 7.6 6.6 8.5 0/6 7.6 6.5 活 C O D (mg/l) 1.4 1.2 1.7 0/6 1.5 1.3 1.7 0/6 1.4 1.2 環 S S (mg/l) 1 <1 2 -/12 1 <1 2 -/6 2 1	1.8	-
(1.5)	1.8	0/6
活 C O D (mg/l) 1.4 1.2 1.7 0/6 1.5 1.3 1.7 0/6 1.4 1.2 1.7 1 く1 2 -/6 2 1	-	
C O D (mg/l) 1.4 1.2 1.7 0/6 1.5 1.3 1.7 0/6 1.4 1.2 場場 S S (mg/l) 1 <1 2 -/12 1 <1 2 -/6 2 1	-	
G G (ing/) 1 1 2 /12 1 1 2 /0 2 1	3	0/6
		-/6
境 大 腸 菌 数 (CFU/100ml) 3 0 23 8/12 1 0 1 3/6 1 0	2	3/6
項 N - ヘ キ サン 抽 出 物 質 (mg/l) <0.5 0/6 <0.5 0/6		
全 塞 素 (mg/l) 0.13 0.08 0.23 -/12 0.16 0.10 0.25 -/6 0.14 0.08	0.20	-/6
全 燐 (mg/l) 0.011 0.009 0.014 -/12 0.012 0.010 0.015 -/6 0.012 0.010	0.015	-/6
全 亜 鉛 (mg/l) 0.003 <0.001 0.007 -/6		
カト・ミウム (mg/l) <0.0003 0/2 <0.0003 0/2		
全 シ 7 ン (mg/l) <0.1 0/2 <0.1 0/2		
鉛 (mg/l) <0.005 0/2 <0.005 0/2		
六価 ケ ロ ム (mg/l)		
础 素 (mg/l) <0.001 0/2 <0.001 0/2		
総 水 銀 (mg/l) <0.0005 0/2 <0.0005 0/2		
アルキル水 銀 (mg/l)		
健 P C B (mg/l) <0.0005 0/2 <0.0005 0/2		
シ [・] ク ロ ロ メ タ ン (mg/l)		
四 塩 化 炭 素 (mg/l)		
康 1.2- シ ^ ク □ □ エ タ ン (mg/l)		
1,1- シ カロロエチレン (mg/l)		
シス -1.2- ジク □ □ エ チ レ ン (mg/l)		
1,1,1- トリクロロエタン (mg/l) 〈0.01 0/2 〈0.01 0/2 項		
1,1,2-トリクロロエタン (mg/l)		
トリカロロエチレン (mg/l)		
テトラクロロエチレン (mg/l)		
1,3- ŷ 'n □ □ 7 ° □ ^ › (mg/l)		
チウラム (mg/l) <0.0006 0/2 <0.0006 0/2 シマシン (mg/l) <0.0003 0/2 <0.0003 0/2		
シマシン (mg/l)		
セレン (mg/l) <0.001 0/2 <0.001 0/2 硝酸性窒素及び亜硝酸性窒素(mg/l) 0.02 <0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02		
明版日至来及び亜明版日至来(IIIg/I)		
銅 (mg/l)		
特 殊 (溶 解 性) (mg/l)		
項 マンカ * ソ (溶 解 性) (mg/l)		
В 7 п Д (mg/l)		
E P N (mg/l)		
7 I / - // (mg/l) <0.001 -/2 <0.001 -/2		
クロロホルム (mg/l) <0.001 -/2 <0.001 -/2		
ホルムアルデヒド (mg/l) <0.008 -/2 <0.008 -/2		
7 ン モ = 7 性 窒 素 (mg/l)		
硝酸性窒素 (mg/l) 0.01 <0.01 0.01 -/2 0.01 <0.01 0.01 -/2		
亜酸性窒素 (mg/l) <0.01 -/2 <0.01 -/2		
リン酸性リン (mg/l) 〈0.01 -/6 〈0.01 -/6		
濁 度 (mg/l)		
塩 化 物 イ オ ン (mg/l) 17500 16000 19000 -/12 17667 17000 19000 -/6 17833 17000	19000	-/6
塩 分 濃 度 (‰) 32 29 35 -/6 32 31 35 -/6		

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名						三輪屿	奇 海 域					
	地 点 名	5	St. 2(下層)	(B【基】, -	-)	s	t. 2(全層)	(B【基】, -	-)	5	St. 3(表層)	(A【基】, -	-)
	測定值測定項目	平均	最小値	最大値	х/у	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	<u> </u>			8.2			8.1	8.2	0/12		8.2	8.2	0/6
 	D O (mg/l)	7.6	6.7	8.2	0/6	7.6	6.5	8.6	0/18	7.7	6.7	8.5	2/6
生						(1.5)				(1.5)			
活	C O D (mg/l)					1.4	1.2	1.8	0/6	1.4	1.2	1.6	0/6
環	S S (mg/l)					1	<1	3	-/12	1	<1	1	-/6
境	大 腸 菌 数 (CFU/100ml)					1	0	2	6/12	0	0	1	0/6
項	N - へ キ サ ン 抽 出 物 質 (mg/l)							<0.5	0/6			<0.5	0/6
	全 窒 素 (mg/l)				9	0.15	0.08	0.25	-/12	0.12	0.09	0.17	-/6
目	全 燐 (mg/l)					0.012	0.010	0.015	-/12	0.012	0.010	0.015	-/6
	全 亜 鉛 (mg/l)				-					0.002	<0.001	0.004	-/6
	ክ ⊦ ំ ミ ウ ᠘ (mg/l)				-			<0.0003	0/2			<0.0003	0/2
	全 シ ア ン (mg/l)							<0.1	0/2			<0.1	0/2
	鉛 (mg/l)							<0.005	0/2			<0.005	0/2
	六 価 ク ロ ム (mg/l)							<0.01	0/2			<0.01	0/2
	砒 素 (mg/l)							<0.001	0/2	0.001	<0.001	0.001	0/2
	総 水 銀 (mg/l)							<0.0005	0/2			<0.0005	0/2
	ア ル キ ル 水 銀 (mg/l)												
健	P C B (mg/l)							<0.0005	0/2			<0.0005	0/2
I.E.	シ ゚ ク ロ ロ メ タ ン (mg/l)							<0.002	0/2			<0.002	0/2
	四 塩 化 炭 素 (mg/l)							<0.0002	0/2			<0.0002	0/2
ı.	1,2- シ゛ク ロ ロ ェ タ ン (mg/l)							<0.0004	0/2			<0.0004	0/2
康	1,1- シ							<0.002	0/2			<0.002	0/2
	シス −1,2− シ゛クロロエチレン (mg/l)							<0.004	0/2			<0.004	0/2
	1,1,1- ト リ ク ロ ロ エ タ ン (mg/l)				-			<0.01	0/2			<0.01	0/2
項	1,1,2- トリクロロエタン (mg/l)							<0.0006	0/2			<0.0006	0/2
	トリクロロエチレン (mg/l)				-			<0.001	0/2			<0.001	0/2
	テトラクロロエチレン (mg/l)				-			<0.001	0/2			<0.001	0/2
目	1,3- シ゛クロロフ゜ロヘ゜ン (mg/l)							<0.0002	0/2			<0.0002	0/2
	チ ウ ラ ム (mg/l)							<0.0006	0/2			<0.0006	0/2
	シ マ シ ・ ン (mg/l)				-			<0.0003	0/2			<0.0003	0/2
	チオヘ゛ンカルフ゛(mg/l)							<0.002	0/2			<0.002	0/2
	へ ・ ン セ ・ ン (mg/l)							<0.001	0/2			<0.001	0/2
	セ レ ン (mg/l)							<0.001	0/2			<0.001	0/2
	硝酸性窒素及び亜硝酸性窒素(mg/l)					0.02	<0.02	0.02	0/2	0.02	<0.02	0.02	0/2
	1,4- シ * オ キ サ ン (mg/l)							<0.005	0/2			<0.005	0/2
4.5	銅 (mg/l)												
特殊	鉄 (溶 解 性) (mg/l)												
項目	マンカ [*] ン(溶 解 性) (mg/l)												
	ク ロ ム (mg/l)												
	E P N (mg/l)												
	フ ェ ノ ー ル (mg/l)							<0.001	-/2			<0.001	-/2
	クロロホルム (mg/l)							<0.001	-/2			<0.001	-/2
	ホルムアルデヒド (mg/l)							<0.008	-/2			<0.008	-/2
	アンモニア性窒素 (mg/l)												
	硝 酸 性 窒 素 (mg/l)					0.01	<0.01	0.01	-/2	0.01	<0.01	0.01	-/2
	亜 酸 性 窒 素 (mg/l)							<0.01	-/2			<0.01	-/2
	リン酸性リン (mg/l)							<0.01	-/6			<0.01	-/6
	濁 度 (mg/l)												
	塩 化 物 イ オ ン (mg/l)					17750	17000	19000	-/12	17833	17000	19000	-/6
	塩 分 濃 度 (‰)					32	31	35	-/6	32	30	35	-/6
_			•	•	-	•		•			•	•	


(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名				三 輪 崎	————			
	地 点 名	S	t. 3(中層)	(A【基】, -	-)	S	t. 3(全層)	(A【基】, -	-)
	測定值	平均	最小値	最大値	x/y	平均	最小値	最大値	х/у
	測 定 項 目 p H		8.2	8.2	0/6		8.2	8.2	0/12
 -	D O (mg/l)	7.9	7.1	8.6	2/6	7.8	6.7	8.6	3/12
生		(<0.5)				(1.5)			
活	C O D (mg/l)	1.4	1.2	1.6	0/6	1.4	1.2	1.6	0/6
環	S S (mg/l)	1	<0.5	1	-/6	1	<1	1	-/12
境	大 腸 菌 数 (CFU/100ml)	0	0	0	0/6	0	0	1	0/12
項	N - へ キ サ ン 抽 出 物 質 (mg/l)							<0.5	0/6
	全 窒 素 (mg/l)	0.12	0.09	0.15	-/6	0.12	0.09	0.17	-/12
目	全 燐 (mg/l)	0.011	0.009	0.012	-/6	0.011	0.009	0.015	-/12
	全 亜 鉛 (mg/l)								
	カ ト ໋ ≷ ່ Δ (mg/l)							<0.0003	0/2
	全 シ ア ン (mg/l)							<0.1	0/2
	鉛 (mg/l)							<0.005	0/2
	六 価 ク ロ ム (mg/l)							<0.01	0/2
	砒 素 (mg/l)					0.001	<0.001	0.001	0/2
	総 水 銀 (mg/l)							<0.0005	0/2
	ア ル キ ル 水 銀 (mg/l)								
健	P C B (mg/l)							<0.0005	0/2
	シ [*] ク ロ ロ メ タ ン (mg/l)							<0.002	0/2
	四 塩 化 炭 素(mg/l)							<0.0002	0/2
康	1,2- シ ゚ ク ロ ロ エ タ ン (mg/l)							<0.0004	0/2
1.50	1,1- シ [*] クロロエチレン (mg/l)							<0.002	0/2
	シス -1,2- シ゜クロロエチレン (mg/l)							<0.004	0/2
項	1,1,1- ト リ ク ロ ロ エ タ ン (mg/l)							<0.01	0/2
74	1,1,2- ト リ ク ロ ロ エ タ ン (mg/l)							<0.0006	0/2
	トリクロロエチレン (mg/l)							<0.001	0/2
	テトラクロロエチレン (mg/l)							<0.001	0/2
目	1,3- シ゛クロロフ゜ロヘ゜ン (mg/l)							<0.0002	0/2
	チ ウ ラ ム (mg/l)							<0.0006	0/2
	シ マ シ ・ ン (mg/l)							<0.0003	0/2
	チオヘ゛ンカルフ゛(mg/l)							<0.002	0/2
	へ ・ ン セ ・ ン (mg/l)							<0.001	0/2
	セ レ ン (mg/l)							<0.001	0/2
	硝酸性窒素及び亜硝酸性窒素(mg/l)					0.02	<0.02	0.02	0/2
<u> </u>	1,4- シ * オ キ サ ン (mg/l)							<0.005	0/2
特	銅 (mg/l)								
殊項	鉄 (溶 解 性) (mg/l)								
月	マンカ [*] ン(溶 解 性) (mg/l)								
	7 □ Δ (mg/l)								
	E P N (mg/l)							16 -	
	フェノール (mg/l)							<0.001	-/2
	クロロホルム (mg/l)							<0.001	-/2
	ホルムアルデヒド (mg/l)							<0.008	-/2
	アンモニア性窒素 (mg/l)					007	(2.2:	0.04	/6
	硝酸性窒素 (mg/l)					0.01	<0.01	0.01	-/2
	亜酸性窒素 (mg/l)							<0.01	-/2
	リン酸性リン (mg/l) ※							<0.01	-/6
	濁 度 (mg/l)	17007	10000	10000	/0	17750	10000	10000	// 0
	塩化物イオン(mg/l)	17667	16000	19000	-/6	17750	16000	19000	-/12
	塩 分 濃 度 (‰)					32	30	35	-/6

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

2-38 和歌山海域水質測定結果

① 和歌山海域測定点図(和歌山市測定分)

- ●C O D 等の環境基準点 ☆T -N 、T -P の環境基準点
- ●COD等かつT-N、T-Pの環境基準点 ○その他の観測点

② 和歌山海域水質測定結果一覧

	海 域 名						築地川及	び水軒川					
	地 点 名	\$	築地橋(C【	基】,皿【補】])		港橋(C【補	制], 皿[補])		i	養翠橋(C【	補】,皿【補】)
	測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		7.5	8.4	1/12		7.5	8.5	1/12		7.5	8.4	1/12
	D O (mg/l)	5.7	4.2	11.0	0/12	6.5	4.1	12	0/12	6.6	4.3	11	0/12
生		(4.7)				(4.0)				(4.9)		000000000000000000000000000000000000000	
活	C O D (mg/l)	4.1	2.9	5.9	0/12	3.7	2.5	5.4	0/12	4.2	2.5	6.0	0/12
	S S (mg/l)	2	1	8	-/12	2	1	7	-/12	4	1	9	-/12
環	大 腸 菌 数 (CFU/100ml)												
境	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	-/6			<0.5	-/6			<0.5	-/6
項	全 窒 素 (mg/l)	2.2	1.4	2.8	12/12	1.7	1.3	2	12/12	2.0	0.9	2.9	12/12
目	全 燐 (mg/l)	0.14	0.089	0.22	12/12	0.11	0.075	0.15	12/12	0.20	0.055	0.35	12/12
	全 亜 鉛 (mg/l)	0.004	0.003	0.004	-/4	0.003	0.002	0.004	-/4	0.007	0.004	0.009	-/4
	L A S (mg/l)			<0.0006	-/1								
	ከ ነ ˚ ξ ጎ ᠘ (mg/l)			<0.0003	0/4			<0.0003	0/4			<0.0003	0/4
	全 シ ア ン (mg/l)			<0.1	0/4			<0.1	0/4			<0.1	0/4
	鉛 (mg/l)			<0.005	0/4			<0.005	0/4			<0.005	0/4
	六 価 ク ロ ム (mg/l)			<0.01	0/4			<0.01	0/4			<0.01	0/4
	砒 素 (mg/l)			<0.001	0/6	0.001	<0.001	0.001	0/6	0.001	<0.001	0.001	0/6
	総 水 銀 (mg/l)			<0.0005	0/4			<0.0005	0/4			<0.0005	0/4
	ア ル キ ル 水 銀 (mg/l)												
健	P C B (mg/l)			<0.0005	0/2								
	シ [*] ク ロ ロ メ タ ン (mg/l)			<0.002	0/2								
	四塩化炭素(mg/l)			<0.0002	0/2								
康	1,2- シ [*] ク ロ ロ エ タ ン (mg/l)			<0.0004	0/2								
	1,1- シ			<0.002	0/2								
	シス −1,2− シ゛クロロェチレン (mg/l)			<0.004	0/2								
項	1,1,1- トリクロロエタン (mg/l)			<0.01	0/2							8	
	1,1,2- トリカロロエタン (mg/l)			<0.0006	0/2							8	
	トリクロロエチレン (mg/l)			<0.001	0/2		-					8	
l	テトラクロロエチレン (mg/l)			<0.001	0/2								
	1,3- シ クロロフ ° ロヘ ° ン (mg/l)			<0.0002	0/2								
	f j j λ (mg/l)			<0.0006	0/2								
	シマシ ・ ン (mg/l)			<0.0003	0/2								
	チオヘ゛ンカルフ゛(mg/l)			<0.002	0/2								
	へ * ン セ * ン (mg/l)			<0.001	0/2								
	セ レ ン (mg/l) 硝酸性窒素及び亜硝酸性窒素(mg/l)	0.59	0.47	<0.001 0.62	0/2		-						
ŀ		0.08	0.47	<0.005	0/2								
<u></u>	1,4 ⁻			<0.003	-/4			<0.04	-/4			<0.04	-/4
特	鉄 (溶 解 性) (mg/l)			1	/ -			(0.0)	, .			(0.0)	, .
殊項	マンカ・ン(溶解性) (mg/l)												
目	7 П Д (mg/l)			<0.03	-/4			<0.03	-/4			<0.03	-/4
\vdash	E P N (mg/l)												
	7 I / - N (mg/l)			<0.001	-/4								
	クロロホルム (mg/l)												
	ホルムアルデヒド (mg/l)												
	ア ン モ ニ ア 性 窒 素 (mg/l)	0.40	0.15	0.70	-/6	0.34	0.18	0.51	-/6	0.45	0.14	0.94	-/6
	硝 酸 性 窒 素 (mg/l)	0.53	0.47	0.59	-/2								
	亜 硝 酸 性 窒 素 (mg/l)	0.055	0.030	0.080	-/2								
	リン酸性リン (mg/l)	0.12	0.07	0.18	-/6	0.10	0.08	0.14	-/6	0.17	0.04	0.29	-/6
	濁 度 (mg/l)												
	塩 化 物 イ オ ン (mg/l)	11000	6800	15000	-/6	13000	9000	16000	-/6	13000	11000	16000	-/6
		-	•	•			•			•	•		

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名					#	和 歌 L	山 海 垣	t.				
	地 点 名	St.	1(上層)(A【補】, Ⅱ【	補】)	St.	1(下層)(A【補】, Ⅱ【	補】)	St.	1(全層)(A【補】, Ⅱ【	補】)
	測定值	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		8.1	8.3	0/12						8.1	8.3	0/12
	D O (mg/l)	8.2	6.6	9.5	4/12	7.8	6.4	9.1	4/12	8.0	6.4	9.5	8/24
生		(1.8)								(1.8)			
活	C O D (mg/l)	1.6	1.2	2.1	1/12					1.6	1.2	2.1	1/12
環	S S (mg/l)	1.2	1	2	-/12					1.2	1	2	-/12
境	大 腸 菌 数 (CFU/100ml)												
	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	-/6							<0.5	-/6
項	全 窒 素 (mg/l)	0.24	0.15	0.31	1/12					0.24	0.15	0.31	1/12
目	全 燐 (mg/l)	0.019	0.011	0.027	0/12					0.019	0.011	0.027	0/12
	全 亜 鉛 (mg/l)	0.001	<0.001	0.001	-/4					0.001	<0.001	0.001	-/4
	L A S (mg/l)			(0.0000	0/4							(0.0000	0./4
	カト * ミウム (mg/l)			<0.0003	0/4							<0.0003	0/4
	全 シ ア ン (mg/l) 鉛 (mg/l)			<0.1 <0.005	0/4							<0.1 <0.005	0/4
	新 (mg/l) 六 価 ク ロ ム (mg/l)			<0.005	0/4							<0.005	0/4
	八 山	0.001	<0.001	0.001	0/4					0.001	<0.001	0.001	0/4
	戦 水 銀 (mg/l)	0.001	\U.UU1	<0.001	0/4					0.001	\U.UU1	<0.0005	0/4
	ア ル キ ル 水 銀 (mg/l)				5, 1							.5.5555	-, 1
17-0-	P C B (mg/l)												
健	シ * ク ロ ロ メ タ ン (mg/l)												
	四 塩 化 炭 素 (mg/l)												
唐	1,2- シ												
康	1,1- シ [*] クロロエチレン (mg/l)												
	シス -1,2- シ゛クロロエチレン (mg/l)												
項	1,1,1- トリクロロエタン (mg/l)											000000000000000000000000000000000000000	
坦	1,1,2- トリクロロエタン (mg/l)												
	トリクロロエチレン (mg/l)												
	テトラクロロエチレン (mg/l)												
	1,3- シ												
	チ ウ ラ ム (mg/l)												
	シマシ ・ ン (mg/l)												
	チオヘ゜ンカルフ゜(mg/l)												
	へ * ン セ * ン (mg/l)												
	セレン(mg/l)												
-	硝酸性窒素及び亜硝酸性窒素(mg/l) 1,4- シ オ キ サ ン (mg/l)												
\vdash	1,4- タ			<0.04	-/4		<u> </u>					<0.04	-/4
特				₹0.04	/ +							\0.04	/ 4
殊項	マンカ [・] ン(溶解性)(mg/l)												
目	7 П Д (mg/l)			<0.03	-/4							<0.03	-/4
	E P N (mg/l)												
	フェノール (mg/l)												
	クロロホルム (mg/l)												
	ホルムアルデヒド (mg/l)												
	ァ ン モ ニ ァ 性 窒 素 (mg/l)			<0.06	-/6							<0.06	-/6
	硝 酸 性 窒 素 (mg/l)												
	亜 硝 酸 性 窒 素 (mg/l)												
	リン酸性リン (mg/l)	0.01	<0.01	0.01	-/6					0.01	<0.01	0.01	-/6
	濁 度 (mg/l)												
	塩 化 物 イ オ ン (mg/l)	18000	16000	18000	-/6					18000	16000	18000	-/6

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名					1	和 歌 L	山 海 均	烖				
	地 点 名	St.	2 (上層)(A【補】, Ⅱ【	補】)	St.	2(下層)(A【補】,Ⅱ【	補】)	St.	2 (全層)(A【補】,II【	補】)
	測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	Н ф		8.1	8.3	0/12						8.1	8.3	0/12
	D O (mg/l)	8.3	6.7	9.8	2/12	7.6	5.9	9.2	5/12	8.0	5.9	9.8	7/24
生		(1.7)								(1.7)			
活	C O D (mg/l)	1.6	1.2	2.5	2/12					1.6	1.2	2.5	2/12
環	S S (mg/l)	1.2	<1	2	-/12					1.2	<1	2	-/12
境	大 腸 菌 数 (CFU/100ml)												
	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	-/6							<0.5	-/6
項	全 窒 素 (mg/l)	0.21	0.16	0.24	0/12					0.21	0.16	0.24	0/12
目	全 燐 (mg/l)	0.02	0.013	0.027	0/12					0.020	0.013	0.027	0/12
	全 亜 鉛 (mg/l)	0.001	<0.001	0.001	-/4					0.001	<0.001	0.001	-/4
_	L A S (mg/l)			(0.0000	0/4							/0.0000	0.44
	カト ・ ミ ウ ム (mg/l)			<0.0003	0/4							<0.0003	0/4
	全 シ 7 ン (mg/l) 鉛 (mg/l)			<0.1 <0.005	0/4							<0.1 <0.005	0/4
	新 (mg/l) 六 価 ク ロ ム (mg/l)			<0.005	0/4							<0.005	0/4
	八 山	0.001	<0.001	0.001	0/4					0.001	<0.001	0.001	0/4
	総 水 銀 (mg/l)	0.001	(0.001	<0.0005	0/4					0.001	(0.001	<0.0005	0/4
	ア ル キ ル 水 銀 (mg/l)			15.5000	5/ 1							.5.5000	٠, ١
/rah	P C B (mg/l)												
健	シ * ク ロ ロ メ タ ン (mg/l)												
	四 塩 化 炭 素 (mg/l)												
_	1,2- シ ^ ク ロ ロ エ タ ン (mg/l)												
康	1,1- シ												
	シス -1,2- シ゛クロロエチレン (mg/l)												
	1,1,1- トリクロロエタン (mg/l)												
項	1,1,2- トリクロロエタン (mg/l)												
	トリクロロエチレン (mg/l)												
	〒トラクロロエチレン (mg/l)												
目	1,3- シ゛クロロフ゜ロヘ゜ン (mg/l)												
	チ ウ ラ ム (mg/l)												
	シマシ * ン (mg/l)												
	チオヘ゛ンカルフ゛ (mg/l)												
	へ * ン セ * ン (mg/l)												
	セ レ ン (mg/l)												
	硝酸性窒素及び亜硝酸性窒素(mg/l)												
-	1,4- シ * オ キ サ ン (mg/l) 銅 (mg/l)			(0.04	-/A							/0.04	_/A
特				<0.04	-/4							<0.04	-/4
殊項	鉄 (溶 解 性) (mg/l) マンカ [*] ン (溶 解 性) (mg/l)												
B	クロム (mg/l)			<0.03	-/4							<0.03	-/4
\vdash	E P N (mg/l)			\U.UU	/ *	<u> </u>						\0.00	/ 1
	7 I / - 1 (mg/l)												
	クロロホルム (mg/l)												
	ホルムアルデヒド (mg/l)												
	ァッモニァ性 窒素 (mg/l)			<0.06	-/6							<0.06	-/6
	硝 酸 性 窒 素 (mg/l)												
	亜 硝 酸 性 窒 素 (mg/l)												
	リン酸性リン (mg/l)	0.01	<0.01	0.01	-/6					0.01	<0.01	0.01	-/6
	濁 度 (mg/l)												
	塩 化 物 イ オ ン (mg/l)	18000	16000	18000	-/6					18000	16000	18000	-/6

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名					Ŧ	印 歌 ᠘	山 海 均	ŧ				
	地 点 名	St.	3(上層)(A【基】,Ⅱ【	補】)	St.	3(下層)(A【基】, Ⅱ【	補】)	St.	3(全層)(A【基】, Ⅱ【	補】)
	測定值	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		8.1	8.3	0/12						8.1	8.3	0/12
	D O (mg/l)	8	6.5	9.9	1/12	7.5	5.8	9.1	5/12	7.9	5.8	9.9	6/24
生		(1.9)								(1.9)			
活	C O D (mg/l)	1.7	1.3	2.1	1/12					1.7	1.3	2.1	1/12
環	S S (mg/l)	1	<1	1	-/12					1	<1	1	-/12
境	大 腸 菌 数 (CFU/100ml)												
	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	-/6							<0.5	-/6
項	全窒素(mg/l)	0.24	0.18	0.33	2/12					0.24	0.18	0.33	2/12
目	全 燐 (mg/l)	0.020	0.010	0.031	1/12					0.02	0.01	0.031	1/12
	全 亜 鉛 (mg/l)	0.001	<0.001	0.001	-/4					0.001	<0.001	0.001	-/4
	L A S (mg/l)			<0.0006	-/1							<0.0006	-/1
	カト * ミウム (mg/l)			<0.0003	0/4							<0.0003	0/4
	全 シ ア ン (mg/l)			<0.1	0/4							<0.1	0/4
	鉛 (mg/l)			<0.005	0/4							<0.005	0/4
	六 価 ク ロ ム (mg/l)	0.05:	(0.55)	<0.01	0/4					0.021	(0.77)	<0.01	0/4
	砒 素 (mg/l)	0.001	<0.001	0.001	0/6					0.001	<0.001	0.001	0/6
	総 水 銀 (mg/l)			<0.0005	0/4							<0.0005	0/4
	アルキル水 銀 (mg/l)			(0.0005	0./0							/0.000F	0 /0
健	P C B (mg/l) シ * ク ロ ロ メ タ ン (mg/l)			<0.0005	0/2							<0.0005	0/2
				<0.002	0/2							<0.002 <0.0002	0/2
	四塩化炭素 (mg/l) 1,2-シ・クロロエタン (mg/l)			<0.0002	0/2							<0.0002	0/2
康	1,1- シ クロロエチレン (mg/l)			<0.0004	0/2							<0.0004	0/2
	シス -1,2- シ			<0.002	0/2							<0.002	0/2
	1,1,1- トリクロロエタン (mg/l)			<0.004	0/2							<0.01	0/2
項	1,1,2- トリクロロエタン (mg/l)			<0.0006	0/2							<0.0006	0/2
	トリクロロエチレン (mg/l)			<0.001	0/2							<0.001	0/2
	テトラクロロエチレン (mg/l)			<0.001	0/2							<0.001	0/2
目	1,3- シ			<0.0002	0/2							<0.0002	0/2
	チ ウ ラ ム (mg/l)			<0.0006	0/2							<0.0006	0/2
	シ マ シ ・ ン (mg/l)			<0.0003	0/2							<0.0003	0/2
	チォヘ゜ンカルフ゜(mg/l)			<0.002	0/2							<0.002	0/2
	へ ・ ン セ ・ ン (mg/l)			<0.001	0/2							<0.001	0/2
	セ レ ン (mg/l)			<0.001	0/2							<0.001	0/2
	硝酸性窒素及び亜硝酸性窒素(mg/l)	0.04	<0.02	0.05	0/2					0.04	<0.02	0.05	0/2
	1,4- シ ・ オ キ サ ン (mg/l)			<0.005	0/2							<0.005	0/2
杜土	銅 (mg/l)			<0.04	-/4							<0.04	-/4
特殊	鉄 (溶 解 性) (mg/l)												
項目	マンカ゛ン(溶 解 性) (mg/l)												
	7 П Д (mg/l)			<0.03	-/4							<0.03	-/4
	E P N (mg/l)												
	フ ェ ノ ー ル (mg/l)												
	クロロホルム (mg/l)												
	ホルムアルデヒド (mg/l)												
	アンモニア性窒素 (mg/l)			<0.06	-/6							<0.06	-/6
	硝酸性窒素 (mg/l)	0.03	<0.01	0.04	-/2					0.03	<0.01	0.04	-/2
	亜 硝 酸 性 窒 素 (mg/l)	0.01	<0.01	0.01	-/2					0.01	<0.01	0.01	-/2
	リン酸性リン (mg/l)	0.01	<0.01	0.01	-/6					0.01	<0.01	0.01	-/6
	濁 度 (mg/l)	10000	10000	10000	/2					10000	10000	10000	/2
	塩 化 物 イ オ ン (mg/l)	18000	16000	19000	-/6					18000	16000	19000	-/6

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名					#	和歌 L	山 海 均	ŧ				
	地 点 名	St.	4(上層)(A【基】,II【	補】)	St.	4(下層)(A【基】, Ⅲ【	補】)	St.	4(全層)(A【基】, Ⅲ【	補】)
	測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		8.1	8.3	0/12						8.1	8.3	0/12
	D O (mg/l)	8.5	6.7	10	3/12	7.5	5.8	8.8	7/12	8	5.8	10	10/24
生		(2.0)								(2.0)		000000000000000000000000000000000000000	
活	C O D (mg/l)	1.8	1.4	2.9	3/12					1.8	1.4	2.9	3/12
環	S S (mg/l)	1.4	<1	3	-/12					1.4	<1	3	-/12
	大 腸 菌 数 (CFU/100ml)												
境	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	-/6							<0.5	-/6
項	全 窒 素 (mg/l)	0.54	0.29	0.91	4/12					0.54	0.29	0.91	4/12
目	全 燐 (mg/l)	0.021	0.012	0.033	0/12					0.021	0.012	0.033	0/12
	全 亜 鉛 (mg/l)	0.002	<0.001	0.003	-/4					0.002	<0.001	0.003	-/4
	L A S (mg/l)			<0.0006	-/1							<0.0006	-/1
	カ ト ゜ ミ ウ ム (mg/l)			<0.0003	0/4							<0.0003	0/4
	全 シ 7 ン (mg/l)			<0.1	0/4							<0.1	0/4
	鉛 (mg/l)			<0.005	0/4							<0.005	0/4
	六価り口ム(mg/l)	2		<0.01	0/4					2		<0.01	0/4
	砒 素 (mg/l)	0.001	<0.001	0.001	0/6					0.001	<0.001	0.001	0/6
	総 水 銀 (mg/l)			<0.0005	0/4							<0.0005	0/4
	アルキル水 銀 (mg/l)			(0.0005	0./0							(0.0005	0.70
健	P C B (mg/l) シ ・ ク ロ ロ メ 多 ン (mg/l)			<0.0005	0/2							<0.0005	0/2
				<0.002	0/2							<0.002	0/2
	四 塩 化 炭 素 (mg/l) 1,2- シ クロロエタン (mg/l)			<0.0002	0/2							<0.0002	0/2
康	1,1- シ			<0.002	0/2							<0.0004	0/2
	シス -1,2- シ ^ クロロエチレン (mg/l)			<0.002	0/2							<0.002	0/2
	1,1,1- トリクロロエタン (mg/l)			<0.01	0/2							<0.01	0/2
項	1,1,2-トリクロロエタン (mg/l)			<0.0006	0/2							<0.0006	0/2
	トリクロロエチレン (mg/l)			<0.001	0/2							<0.001	0/2
	テトラクロロエチレン (mg/l)			<0.001	0/2							<0.001	0/2
目	1,3- シ			<0.0002	0/2							<0.0002	0/2
	チ ウ ラ ム (mg/l)			<0.0006	0/2							<0.0006	0/2
	シ マ シ ・ ン (mg/l)			<0.0003	0/2							<0.0003	0/2
	チオへ゛ンカルフ゛(mg/l)			<0.002	0/2							<0.002	0/2
	へ ・ ン セ ・ ン (mg/l)			<0.001	0/2							<0.001	0/2
	セ レ ン (mg/l)			<0.001	0/2							<0.001	0/2
	硝酸性窒素及び亜硝酸性窒素(mg/l)	0.10	0.06	0.14	0/2					0.10	0.06	0.14	0/2
	1,4- シ ・ オ キ サ ン (mg/l)			<0.005	0/2							<0.005	0/2
特	銅 (mg/l)			<0.04	-/4							<0.04	-/4
殊	鉄 (溶 解 性) (mg/l)												
項目	マンカ [*] ン(溶解性)(mg/l)												
<u>_</u>	7 □ Δ (mg/l)			<0.03	-/4		1					<0.03	-/4
	E P N (mg/l)												
	フェノール (mg/l)			<0.001	-/4							<0.001	-/4
	クロロホルム (mg/l)												
	ホルムアルデヒド (mg/l)		/==:									-	
	アンモニア性窒素 (mg/l)	0.01	<0.01	0.02	-/6					0.17	<0.06	0.38	-/6
	硝酸性窒素(mg/l)	80.0	0.04	0.12	-/2					0.08	0.04	0.12	-/2
	亜 硝 酸 性 窒 素 (mg/l)	0.02	0.02	0.02	-/2					0.02	0.02	0.02	-/2 /6
	リン酸性リン (mg/l) 湯 度 (mg/l)	0.17	<0.06	0.38	-/6					0.01	<0.01	0.02	-/6
	置度 (mg/l)	17000	16000	18000	-/6					17000	16000	18000	-/6
	塩 化 物 イ オ ン (mg/l)	1/000	10000	18000	-/ O	l				1 / 000	10000	18000	-/ o

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名					7	和 歌 L	山 海 均	Į.				
	地 点 名	St.	5(上層)(B【基】, Ⅲ【	補】)	St.	5(下層)(B【基】, Ⅲ【	補】)	St.	5(全層)(B【基】, Ⅲ【	補】)
	測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		8.1	8.3	0/12						8.1	8.3	0/12
	D O (mg/l)	8.7	6.6	10	0/12	7.7	6.4	9.2	0/12	8.2	6.4	10	0/24
生		(2.1)								(2.1)		000000000000000000000000000000000000000	
活	C O D (mg/l)	2.1	1.4	3.2	3/12					2.1	1.4	3.2	3/12
環	S S (mg/l)	1.5	1	3	-/12					1.5	1	3	-/12
	大 腸 菌 数 (CFU/100ml)												
境	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	-/6							<0.5	-/6
項	全 窒 素 (mg/l)	0.64	0.4	0.95	6/12					0.64	0.4	0.95	6/12
目	全 燐 (mg/l)	0.022	0.01	0.035	0/12					0.022	0.01	0.035	0/12
	全 亜 鉛 (mg/l)	0.002	<0.001	0.002	-/4					0.002	<0.001	0.002	-/4
	L A S (mg/l)			<0.0006	-/1							<0.0006	-/1
	カ ト ゜ ミ ウ ム (mg/l)			<0.0003	0/4							<0.0003	0/4
	全 シ ア ン (mg/l)			<0.1	0/4							<0.1	0/4
	鉛 (mg/l)			<0.005	0/4							<0.005	0/4
	六 価 ク ロ ム (mg/l)			<0.01	0/4							<0.01	0/4
	砒 素 (mg/l)	0.001	<0.001	0.001	0/6					0.001	<0.001	0.001	0/6
	総 水 銀 (mg/l)			<0.0005	0/4							<0.0005	0/4
	アルキル水 銀 (mg/l)											8	
健	P C B (mg/l)			<0.0005	0/2							<0.0005	0/2
	シ * ク ロ ロ メ タ ン (mg/l)			<0.002	0/2							<0.002	0/2
	四塩化炭素(mg/l)			<0.0002	0/2							<0.0002	0/2
康	1,2- シ			<0.0004	0/2							<0.0004	0/2
	1,1- シ * クロロエチレン (mg/l)			<0.002	0/2							<0.002	0/2
	シス -1,2- シ * クロロエチレン (mg/l)			<0.004	0/2							<0.004	0/2
項	1,1,1- トリクロロエタン (mg/l)			<0.01	0/2							<0.01	0/2
	1,1,2- ト リ ク ロ ロ エ タ ン (mg/l)			<0.0006 <0.001	0/2							<0.0006 <0.001	0/2
	トリクロロエチレン (mg/l) テトラクロロエチレン (mg/l)			<0.001	0/2							<0.001	0/2
目	1,3- シ クロロフ ° ロヘ ° ン (mg/l)			<0.0002	0/2							<0.0001	0/2
	f j j L (mg/l)			<0.0002	0/2							<0.0002	0/2
	・			<0.0003	0/2							<0.0003	0/2
	チ オ へ ゛ ン カ ル フ ゛ (mg/l)			<0.002	0/2							<0.002	0/2
	へ * ン セ * ン (mg/l)			<0.001	0/2							<0.001	0/2
	セ レ ン (mg/l)			<0.001	0/2							<0.001	0/2
	研酸性窒素及び亜硝酸性窒素(mg/l)	0.14	0.13	0.15	0/2					0.14	0.13	0.15	0/2
	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/2							<0.005	0/2
	銅 (mg/l)			<0.04	-/4							<0.04	-/4
特殊	鉄 (溶 解 性) (mg/l)												
項	マンカ [*] ン(溶解性)(mg/l)												
目	7 П Д (mg/l)			<0.03	-/4							<0.03	-/4
	E P N (mg/l)												
	フ ェ ノ ー ル (mg/l)			<0.001	-/4							<0.001	-/4
	クロロホルム (mg/l)			-									
	ホルムアルデヒド (mg/l)												
	アンモニア性窒素 (mg/l)	0.24	0.10	0.62	-/6					0.24	0.10	0.62	-/6
	硝 酸 性 窒 素 (mg/l)	0.11	0.08	0.13	-/2					0.11	0.08	0.13	-/2
	亜 硝 酸 性 窒 素 (mg/l)	0.04	0.02	0.05	-/2					0.04	0.02	0.05	-/2
	リン酸性リン (mg/l)	0.01	<0.01	0.01	-/6					0.01	<0.01	0.01	-/6
	濁 度 (mg/l)												
	塩 化 物 イ オ ン (mg/l)	17000	16000	18000	-/6					17000	16000	18000	-/6

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	地 点 名	St.	6(上層)(A【基】, Ⅱ【	補】)	St.	6(下層)(A【基】, Ⅱ【	補】)	St.	6(全層)(A【基】, Ⅱ【	補】)
	測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		8.1	8.2	0/12						8.1	8.2	0/12
	D O (mg/l)	8.3	6.8	9.6	3/12	7.5	5.8	8.8	6/12	7.9	5.8	9.6	9/24
生		(1.8)								(1.8)			
活	C O D (mg/l)	1.7	1.4	2.3	1/12					1.7	1.4	2.3	1/12
環	S S (mg/l)	1.3	<1	3	-/12					1.3	<1	3	-/12
境	大 腸 菌 数 (CFU/100ml)												
	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	-/6							<0.5	-/6
項	全 窒 素 (mg/l)	0.22	0.17	0.29	0/12					0.22	0.17	0.29	0/12
目	全 燐 (mg/l)	0.019	0.01	0.026	0/12					0.019	0.01	0.026	0/12
	全 亜 鉛 (mg/l)	0.001	<0.001	0.002	-/4					0.001	<0.001	0.002	-/4
	L A S (mg/l)			<0.0006	-/1							<0.0006	-/1
	カ ト * ミ ウ ム (mg/l)			<0.0003	0/4							<0.0003	0/4
	全 シ ァ ン (mg/l)			<0.1	0/4							<0.1	0/4
	鉛 (mg/l)			<0.005	0/4							<0.005	0/4
	六価りロム (mg/l)			<0.01	0/4							<0.01	0/4
	砒 素 (mg/l)	0.001	<0.001	0.001	0/6					0.001	<0.001	0.001	0/6
	総 水 銀 (mg/l)			<0.0005	0/4							<0.0005	0/4
	アルキル水 銀 (mg/l)				2 (2								2 (2
健	P C B (mg/l)			<0.0005	0/2							<0.0005	0/2
	シ * ク ロ ロ メ タ ン (mg/l)			<0.002	0/2							<0.002	0/2
	四 塩 化 炭 素 (mg/l)			<0.0002	0/2							<0.0002	0/2
康	1,2- シ			<0.0004 <0.002	0/2							<0.0004 <0.002	0/2
	シス -1,2- シ クロロエチレン (mg/l)												
	リス -1,2- リ			<0.004 <0.01	0/2 0/2							<0.004 <0.01	0/2
項	1,1,1- トリクロロエタン (mg/l)			<0.0006	0/2							<0.0006	0/2
	トリクロロエチレン (mg/l)			<0.000	0/2							<0.001	0/2
	 			<0.001	0/2							<0.001	0/2
目	1,3- シ			<0.0002	0/2							<0.0002	0/2
	チ ウ ラ ム (mg/l)			<0.0006	0/2							<0.0006	0/2
	シマシ ・ ン (mg/l)			<0.0003	0/2							<0.0003	0/2
	チオヘ゛ンカルフ゛(mg/l)			<0.002	0/2							<0.002	0/2
	へ * ン セ * ン (mg/l)			<0.001	0/2							<0.001	0/2
	セ レ ン (mg/l)			<0.001	0/2							<0.001	0/2
	硝酸性窒素及び亜硝酸性窒素(mg/l)	0.04	<0.02	0.06	0/2					0.04	<0.02	0.06	0/2
	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/2							<0.005	0/2
d.t.	銅 (mg/l)			<0.04	-/4							<0.04	-/4
特殊	鉄 (溶 解 性) (mg/l)												
項目	マンカ゛ン(溶 解 性) (mg/l)												
L	7 П Д (mg/l)			<0.03	-/4							<0.03	-/4
	E P N (mg/l)												
	フ ェ ノ ー ル (mg/l)			<0.001	-/4							<0.001	-/4
	クロロホルム (mg/l)												
	ホルムアルデヒド (mg/l)												
	アンモニア性窒素 (mg/l)			<0.06	-/6							<0.06	-/6
	硝 酸 性 窒 素 (mg/l)	0.03	<0.01	0.05	-/2					0.03	<0.01	0.05	-/2
	亜 硝 酸 性 窒 素 (mg/l)			<0.01	-/2							<0.01	-/2
	リン酸性リン (mg/l)	0.01	<0.01	0.01	-/6					0.01	<0.01	0.01	-/6
	濁 度 (mg/l)												
	塩 化 物 イ オ ン (mg/l)	17000	15000	18000	-/6					17000	15000	18000	-/6

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名					, , , , , , , , , , , , , , , , , , ,	和歌 L	山 海 均	Į.				
	地 点 名	St.	7(上層)(A【補】, Ⅲ【	補】)	St.	7(下層)(A【補】, Ⅲ【	補】)	St.	7(全層)(A【補】, Ⅲ【	補】)
	測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		8	8.2	0/12						8	8.2	0/12
	D O (mg/l)	8.4	6.6	10	2/12	7.7	6.3	9.2	5/12	8.1	6.3	10	7/24
生		(2.2)								(2.2)			
活	C O D (mg/l)	2.0	1.6	2.6	6/12					2.0	1.6	2.6	6/12
環	S S (mg/l)	2.1	1	8	-/12					2.1	1	8	-/12
境	大 腸 菌 数 (CFU/100ml)												
	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	-/6							<0.5	-/6
項	全 窒 素 (mg/l)	0.33	0.24	0.57	0/12					0.33	0.24	0.57	0/12
目	全 燐 (mg/l)	0.028	0.011	0.038	0/12					0.028	0.011	0.038	0/12
	全 亜 鉛 (mg/l)	0.001	<0.001	0.002	-/4					0.001	<0.001	0.002	-/4
	L A S (mg/l)												
	カト * ミウム (mg/l)			<0.0003	0/4							<0.0003	0/4
	全 シ ア ン (mg/l)			<0.1	0/4							<0.1	0/4
	鉛 (mg/l)			<0.005	0/4							<0.005	0/4
	六 価 ク ロ ム (mg/l)	0.001	(0.001	<0.01	0/4					0.001	/0.001	<0.01	0/4
	砒 素 (mg/l)	0.001	<0.001	0.001	0/6					0.001	<0.001	0.001 <0.0005	0/6
	総 水 銀 (mg/l)			<0.0005	0/4							<0.0005	0/4
	アルキル水 銀 (mg/l) P C B (mg/l)												
健	シ [*] ク ロ ロ メ タ ン (mg/l)												
	四塩化炭素(mg/l)												
	1,2- シ												
康	1,1- シ [*] クロロエチレン (mg/l)												
	シス -1,2- シ゛クロロエチレン (mg/l)												
	1,1,1- トリクロロエタン (mg/l)												
項	1,1,2- トリクロロエタン (mg/l)												
	トリクロロエチレン (mg/l)												
	テトラクロロエチレン (mg/l)												
目	1,3- シ゛クロロフ゜ロヘ゜ン (mg/l)												
	チ ウ ラ ム (mg/l)												
	シ マ シ ・ ン (mg/l)												
	チオヘ゛ンカルフ゛(mg/l)												
	へ * ン セ * ン (mg/l)												
	セ レ ン (mg/l)												
	硝酸性窒素及び亜硝酸性窒素(mg/l)												
_	1,4- シ * オ キ サ ン (mg/l)						1						
特	銅 (mg/l)			<0.04	-/4							<0.04	-/4
殊	鉄 (溶 解 性) (mg/l)												
項目	マンカ゛ン(溶解性)(mg/l)												
-	7 □ Δ (mg/l)			<0.03	-/4		1					<0.03	-/4
	E P N (mg/l)												
	7 I / - 1 (mg/l)												
	クロロホルム (mg/l)												
	ホルムアルデヒド (mg/l) マルエ・マ性 突 表 (mg/l)			<0.06	_/6							<0.06	_/6
	アンモニア性窒素 (mg/l) 硝酸性窒素 (mg/l)			₹0.06	-/6							₹ 0.06	-/6
	硝酸性窒素(mg/l) 亜硝酸性窒素(mg/l)												
	里 明 皎 住 単 条 (IIIg/I) リン 酸 性 リン (mg/l)	0.02	<0.01	0.02	-/6					0.02	<0.01	0.02	-/6
	<u> </u>	3.02	.0.01	3.02	, ,					0.02	.5.51	3.02	, 3
		16000	12000	18000	-/6					16000	12000	18000	-/6
		. 5000	.2000		, 3	<u> </u>	1			. 5550	.2000	. 5550	, 3

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名					#	和 歌 L	山 海 垣	t				
	地 点 名	St.	8 (上層)(A【補】, Ⅲ【	基])	St.	8 (下層)(A【補】, 皿【	基])	St.	8 (全層)(A【補】, 皿【	基])
	測定值	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		8.1	8.3	0/12						8.1	8.3	0/12
	D O (mg/l)	8.3	6.7	9.6	2/12	7.7	6.1	9	5/12	8	6.1	9.6	7/24
生		(1.9)								(1.9)			
活	C O D (mg/l)	1.8	1.5	2.3	2/12					1.8	1.5	2.3	2/12
環	S S (mg/l)	1.2	<1	2	-/12					1.2	<1	2	-/12
境	大 腸 菌 数 (CFU/100ml)												
	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	-/6							<0.5	-/6
項	全窒素(mg/l)	0.30	0.21	0.48	0/12					0.30	0.21	0.48	0/12
目	全 燐 (mg/l)	0.025	0.012	0.036	0/12					0.025	0.012	0.036	0/12
	全 亜 鉛 (mg/l)	0.001	<0.001	0.002	-/4					0.001	<0.001	0.002	-/4
	L A S (mg/l)												
	カト * ミウム (mg/l)			<0.0003	0/4							<0.0003	0/4
	全 シ ア ン (mg/l)			<0.1	0/4							<0.1	0/4
	鉛 (mg/l)			<0.005	0/4							<0.005	0/4
	六 価 ク ロ ム (mg/l)	0.001	/0.001	<0.01	0/4					0.001	Z0.001	<0.01	0/4
	砒 素 (mg/l)	0.001	<0.001	0.001	0/6					0.001	<0.001	0.001 <0.0005	0/6
	総 水 銀 (mg/l) アルキル水 銀 (mg/l)			<0.0005	0/4							\U.UUU5	0/4
	アルキル 水 皷 (mg/l) P C B (mg/l)												
健	シ * ク ロ ロ メ タ ン (mg/l)												
	四 塩 化 炭 素 (mg/l)												
	1,2- シ												
康	1,1- シ [*] クロロエチレン (mg/l)												
	シス -1,2- シ゛クロロエチレン (mg/l)												
	1,1,1-トリクロロエタン (mg/l)												
項	1,1,2- トリクロロエタン (mg/l)												
	トリクロロエチレン (mg/l)												
	テトラクロロエチレン (mg/l)												
目	1,3- シ゛クロロフ゜ロヘ゜ン (mg/l)												
	チ ウ ラ ム (mg/l)												
	シマシ ・ ン (mg/l)												
	チ オ へ ゛ ン カ ル フ ゛ (mg/l)												
	へ ・ ン セ ・ ン (mg/l)												
	セ レ ン (mg/l)												
	硝酸性窒素及び亜硝酸性窒素(mg/l)												
<u></u>	1,4- シ * オ キ サ ン (mg/l)												
特	銅 (mg/l)			<0.04	-/4							<0.04	-/4
殊項	鉄 (溶 解 性) (mg/l)												
目	マンカ゛ン(溶解性)(mg/l)			(2.2.	,.							/==-	
-	ク □ Δ (mg/l)			<0.03	-/4							<0.03	-/4
	E P N (mg/l)												
	フェノール (mg/l)												
	ク ロ ロ ホ ル ム (mg/l) ホ ル ム ア ル デ ヒド (mg/l)												
	アンモニア性窒素 (mg/l)			<0.06	-/6							<0.06	-/6
	が			\U.UU	, 3							\0.00	/ 0
	亜 硝 酸 性 窒 素 (mg/l)												
	リン酸性リン (mg/l)	0.01	<0.01	0.02	-/6					0.01	<0.01	0.02	-/6
	演 度 (mg/l)			-									
	塩 化 物 イ オ ン (mg/l)	17000	14000	18000	-/6					17000	14000	18000	-/6
			E				\$			1	1	š.	

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海域名		和歌山海域 St. 9(上層) (C[基], 皿[補]) St. 9(上層) (C[基], 皿[補]) St. 9(上層) (C[基], 皿[補])											
	地 点 名	St.	9(上層)(C【基】, Ⅲ【	補】)	St.	9(下層)(C【基】, Ⅲ【	補】)	St.	9(全層)(C【基】, Ⅲ【	補】)	
	測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	
	р Н		8	8.2	0/12						8	8.2	0/12	
	D O (mg/l)	7.9	6.2	9	0/12	7.5	5.9	8.9	0/12	7.7	5.9	9	0/24	
生		(2.5)								(2.5)				
活	C O D (mg/l)	2.2	1.6	2.9	0/12					2.2	1.6	2.9	0/12	
環	S S (mg/l)	2.2	1	4	-/12					2.2	1	4	-/12	
境	大 腸 菌 数 (CFU/100ml)													
	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	-/6							<0.5	-/6	
項	全 窒 素 (mg/l)	0.49	0.26	0.76	3/12					0.49	0.26	0.76	3/12	
目	全 燐 (mg/l)	0.042	0.026	0.057	1/12					0.042	0.026	0.057	1/12	
	全 亜 鉛 (mg/l)	0.002	<0.001	0.004	-/4					0.002	<0.001	0.004	-/4	
	L A S (mg/l)			<0.0006	-/1							<0.0006	-/1	
	カト゛ミウム (mg/l)			<0.0003	0/4							<0.0003	0/4	
	全 シ 7 ン (mg/l)			<0.1	0/4							<0.1	0/4	
	鉛 (mg/l)			<0.005	0/4							<0.005	0/4	
	六価りロム (mg/l)			<0.01	0/4							<0.01	0/4	
	砒 素 (mg/l)	0.001	<0.001	0.001	0/6					0.001	<0.001	0.001	0/6	
	総 水 銀 (mg/l)			<0.0005	0/4							<0.0005	0/4	
	アルキル水銀(mg/l)													
健	P C B (mg/l)			<0.0005	0/2							<0.0005	0/2	
	シ * ク ロ ロ メ タ ン (mg/l)			<0.002	0/2							<0.002	0/2	
	四塩化炭素(mg/l)			<0.0002	0/2							<0.0002	0/2	
康	1,2- シ			<0.0004	0/2							<0.0004 <0.002	0/2	
	「, i -			<0.002	0/2							<0.002	0/2	
	クス -1,2- ク			<0.004	0/2							<0.004	0/2	
項	1,1,2- トリクロロエタン (mg/l)			<0.0006	0/2							<0.0006	0/2	
	トリクロロエチレン (mg/l)			<0.000	0/2							<0.000	0/2	
	テトラクロロエチレン (mg/l)			<0.001	0/2							<0.001	0/2	
目	1,3- シ			<0.0002	0/2							<0.0002	0/2	
	チ ウ ラ ム (mg/l)			<0.0006	0/2							<0.0006	0/2	
	シマシ ・ ン (mg/l)			<0.0003	0/2							<0.0003	0/2	
	チオヘ゜ンカルフ゜(mg/l)			<0.002	0/2							<0.002	0/2	
	へ * ン セ * ン (mg/l)			<0.001	0/2							<0.001	0/2	
	セ レ ン (mg/l)			<0.001	0/2							<0.001	0/2	
	- 硝酸性窒素及び亜硝酸性窒素(mg/l)	0.08	<0.02	0.13	0/2					0.08	<0.02	0.13	0/2	
	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/2							<0.005	0/2	
	銅 (mg/l)			<0.04	-/4							<0.04	-/4	
特殊	鉄 (溶 解 性) (mg/l)													
項目	マンカ [*] ン(溶解性)(mg/l)													
L	7 П Д (mg/l)			<0.03	-/4							<0.03	-/4	
	E P N (mg/l)													
	フェノ — ル (mg/l)			<0.001	-/4							<0.001	-/4	
	クロロホルム (mg/l)													
	ホルムアルデヒド (mg/l)													
	アンモニア性窒素 (mg/l)	0.09	<0.06	0.14	-/6					0.09	<0.06	0.14	-/6	
	硝 酸 性 窒 素 (mg/l)	0.06	<0.01	0.11	-/2					0.06	<0.01	0.11	-/2	
	亜 硝 酸 性 窒 素 (mg/l)	0.02	<0.01	0.02	-/2					0.02	<0.01	0.02	-/2	
	リン酸性リン (mg/l)	0.03	0.02	0.04	-/6					0.03	0.02	0.04	-/6	
	濁 度 (mg/l)													
	塩 化 物 イ オ ン (mg/l)	17000	15000	18000	-/6					17000	15000	18000	-/6	

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名					7	和歌 L	山 海 均	t				
	地 点 名	St.	10(上層)((B【基】, Ⅲ【	【補】)	St.	10(下層)(〔B【基】,Ⅲ【	補】)	St.	10(全層)	(B【基】, 皿【	補】)
	測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		8.1	8.3	0/12						8.1	8.3	0/12
	D O (mg/l)	8.7	6.3	9.7	0/12	7.4	6.3	8.8	0/12	8	6.3	9.7	0/24
生		(2.4)								(2.4)		000000000000000000000000000000000000000	
活	C O D (mg/l)	2.2	1.7	2.7	0/12					2.2	1.7	2.7	0/12
環	S S (mg/l)	1.8	1	3	-/12					1.8	1	3	-/12
	大 腸 菌 数 (CFU/100ml)												
境	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	-/6							<0.5	-/6
項	全 窒 素 (mg/l)	0.37	0.23	0.54	0/12					0.37	0.23	0.54	0/12
目	全 燐 (mg/l)	0.032	0.022	0.042	0/12					0.032	0.022	0.042	0/12
	全 亜 鉛 (mg/l)	0.002	<0.001	0.003	-/4					0.002	<0.001	0.003	-/4
	L A S (mg/l)			<0.0006	-/1							<0.0006	-/1
	カ ト ゜ ミ ウ ム (mg/l)			<0.0003	0/4							<0.0003	0/4
	全 シ 7 ン (mg/l)			<0.1	0/4							<0.1	0/4
	鉛 (mg/l)			<0.005	0/4							<0.005	0/4
	六価り口ム(mg/l)	2		<0.01	0/4							<0.01	0/4
	砒 素 (mg/l)	0.001	<0.001	0.001	0/6					0.001	<0.001	0.001	0/6
	総 水 銀 (mg/l)			<0.0005	0/4							<0.0005	0/4
	アルキル水 銀 (mg/l)			(0.0005	0.70							(0.0005	0.40
健	P C B (mg/l)			<0.0005	0/2							<0.0005	0/2
	シ * ク ロ ロ メ タ ン (mg/l)			<0.002	0/2							<0.002	0/2
	四 塩 化 炭 素 (mg/l) 1,2- シ クロロエタン (mg/l)			<0.0002	0/2							<0.0002 <0.0004	0/2
康	1,2- シ			<0.004	0/2							<0.0004	0/2
	シス -1,2- シ * クロロエチレン (mg/l)			<0.002	0/2							<0.002	0/2
	1,1,1- トリクロロエタン (mg/l)			<0.004	0/2							<0.004	0/2
項	1,1,2-トリクロロエタン (mg/l)			<0.0006	0/2							<0.0006	0/2
	トリクロロエチレン (mg/l)			<0.001	0/2							<0.001	0/2
	テトラクロロエチレン (mg/l)			<0.001	0/2							<0.001	0/2
目	1,3- シ			<0.0002	0/2							<0.0002	0/2
	チ ウ ラ ム (mg/l)			<0.0006	0/2							<0.0006	0/2
	シ マ シ ・ ン (mg/l)			<0.0003	0/2							<0.0003	0/2
	チオヘ゜ンカルフ゜(mg/l)			<0.002	0/2							<0.002	0/2
	へ ・ ン セ ・ ン (mg/l)			<0.001	0/2							<0.001	0/2
	セ レ ン (mg/l)			<0.001	0/2							<0.001	0/2
	硝酸性窒素及び亜硝酸性窒素(mg/l)	0.06	<0.02	0.1	0/2					0.06	<0.02	0.1	0/2
	1,4- シ ・ オ キ サ ン (mg/l)			<0.005	0/2							<0.005	0/2
特	銅 (mg/l)			<0.04	-/4							<0.04	-/4
殊	鉄 (溶 解 性) (mg/l)												
項目	マンカ゛ン(溶 解 性) (mg/l)												
Ĺ	7 П Д (mg/l)			<0.03	-/4							<0.03	-/4
	E P N (mg/l)												
	フ ェ ノ ー ル (mg/l)			<0.001	-/4							<0.001	-/4
	クロロホルム (mg/l)												
	ホルムアルデヒド (mg/l)												
	アンモニア性窒素 (mg/l)	0.06	<0.06	0.07	-/6					0.06	<0.06	0.07	-/6
	硝酸性窒素 (mg/l)	0.05	<0.01	0.09	-/2					0.05	<0.01	0.09	-/2
	亜 硝 酸 性 窒 素 (mg/l)	0.01	<0.01	0.01	-/2					0.01	<0.01	0.01	-/2
	リン酸性リン (mg/l)	0.01	<0.01	0.02	-/6					0.01	<0.01	0.02	-/6
	演度 (mg/l)	17000	15055	10055	/-					17000	15055	10055	/6
	塩 化 物 イ オ ン (mg/l)	17000	15000	18000	-/6	<u> </u>		Table 1		17000	15000	18000	-/6

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名		和 歌 山 海 域 St. 11(上層)(A[基], 皿[補]) St. 11(下層)(A[基], 皿[補]) St. 11(全層)(A[基], 皿[補])											
	地 点 名	St.	11(上層)(A【基】, 皿【	[補])	St.	11(下層)(A【基】, 皿[補】)	St. 11(全層) (A【基】, Ⅲ【補】)				
	測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	
	р Н		8.1	8.2	0/12						8.1	8.2	0/12	
	D O (mg/l)	8.1	6.6	9.5	3/12	7.7	6	9.2	5/12	7.9	6	9.5	8/24	
生		(1.6)								(1.6)				
活	C O D (mg/l)	1.5	1.3	1.8	0/12					1.5	1.3	1.8	0/12	
環	S S (mg/l)	1	<1	1	-/12					1	<1	1	-/12	
境	大 腸 菌 数 (CFU/100ml)													
	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	-/6							<0.5	-/6	
項	全 窒 素 (mg/l)	0.19	0.13	0.24	0/12					0.19	0.13	0.24	0/12	
目	全 燐 (mg/l)	0.018	0.010	0.026	0/12					0.018	0.010	0.026	0/12	
	全 亜 鉛 (mg/l)	0.001	<0.001	0.001	-/4					0.001	<0.001	0.001	-/4	
	L A S (mg/l)			<0.0006	-/1							<0.0006	-/1	
	カ ト * ミ ウ ム (mg/l)			<0.0003	0/4							<0.0003	0/4	
	全 シ ア ン (mg/l)			<0.1	0/4							<0.1	0/4	
	鉛 (mg/l)			<0.005	0/4							<0.005	0/4	
	六価り口ム(mg/l)	0.05 :	(0.55)	<0.01	0/4					0.05	(0.77)	<0.01	0/4	
	砒 素 (mg/l)	0.001	<0.001	0.001	0/6					0.001	<0.001	0.001	0/6	
	総 水 銀 (mg/l)			<0.0005	0/4							<0.0005	0/4	
	アルキル水 銀 (mg/l)			<0.000E	0./0							<0.000E	0 /0	
健	P C B (mg/l) シ ・ ク ロ ロ メ 多 ン (mg/l)			<0.0005 <0.002	0/2 0/2							<0.0005 <0.002	0/2	
	四塩化炭素(mg/l)			<0.002	0/2							<0.002	0/2	
	1,2- シ カロロエタン (mg/l)			<0.0002	0/2							<0.0002	0/2	
康	1,1- シ * クロロエチレン (mg/l)			<0.002	0/2							<0.002	0/2	
	シス -1,2- シ * クロロエチレン (mg/l)			<0.004	0/2							<0.004	0/2	
	1,1,1- トリクロロエタン (mg/l)			<0.01	0/2							<0.01	0/2	
項	1,1,2- トリクロロエタン (mg/l)			<0.0006	0/2							<0.0006	0/2	
	トリクロロエチレン (mg/l)			<0.001	0/2							<0.001	0/2	
	テトラクロロエチレン (mg/l)			<0.001	0/2							<0.001	0/2	
目	1,3- シ			<0.0002	0/2							<0.0002	0/2	
	チ ウ ラ ム (mg/l)			<0.0006	0/2							<0.0006	0/2	
	シ マ シ ・ ン (mg/l)			<0.0003	0/2							<0.0003	0/2	
	チオへ゛ンカルフ゛(mg/l)			<0.002	0/2							<0.002	0/2	
	へ ・ ン セ ・ ン (mg/l)			<0.001	0/2							<0.001	0/2	
	セ レ ン (mg/l)			<0.001	0/2							<0.001	0/2	
	硝酸性窒素及び亜硝酸性窒素(mg/l)	0.04	<0.02	0.05	0/2					0.04	<0.02	0.05	0/2	
	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/2							<0.005	0/2	
特	銅 (mg/l)			<0.04	-/4							<0.04	-/4	
殊	鉄 (溶 解 性) (mg/l)													
項目	マンカ゛ン(溶解性)(mg/l)													
-	7 □ Δ (mg/l)			<0.03	-/4							<0.03	-/4	
	E P N (mg/l)			(0.05:								(0.05)		
	7 I / - \(\mg/\)			<0.001	-/4							<0.001	-/4	
	ク ロ ロ ホ ル ム (mg/l) ホ ル ム ア ル デ ヒド (mg/l)													
				<0.06	-/6							<0.06	-/6	
	アンモニア性窒素(mg/l) 硝酸性窒素(mg/l)	0.03	<0.01	0.06	-/b -/2					0.03	<0.01	0.06	-/b -/2	
	明 版 注 至 条 (mg/l) 亜 硝 酸 性 窒 素 (mg/l)	0.03	<0.01	0.04	-/2 -/2					0.03	<0.01	0.04	-/2 -/2	
	里 明 段 住 至 条 (IIIg/I) リン 酸 性 リン (mg/I)	0.01	<0.01	0.01	-/2 -/6					0.01	<0.01	0.01	-/2 -/6	
		5.51	.5.01	5.51	, •					5.01	.5.01	5.51	, •	
	塩 化 物 イ オ ン (mg/l)	18000	17000	19000	-/6					18000	17000	19000	-/6	
	13 1 3 2 (115/17	. 2000			, ,			I	1		1		, ,	

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名		和 歌 山 海 域 St. 12(上層) (B[基], 皿[補]) St. 12(下層) (B[基], 皿[補]) St. 12(全層) (B[基], 皿[補])											
	地 点 名	St.	12(上層)(B【基】,皿【	(補】)	St.	12(下層)(B【基】,皿【	補】)	St. 12(全層) (B【基】, 皿【補】)				
	測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	
	р Н		8.1	8.4	2/12						8.1	8.4	2/12	
	D O (mg/l)	9.3	6.8	11	0/12	7.2	5.5	9.1	0/12	8.2	5.5	11	0/24	
生		(2.5)								(2.5)				
活	C O D (mg/l)	2.6	1.7	6.5	2/12					2.6	1.7	6.5	2/12	
環	S S (mg/l)	1.9	1	3	-/12					1.9	1	3	-/12	
'	大 腸 菌 数 (CFU/100ml)													
境	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	-/6							<0.5	-/6	
項	全 窒 素 (mg/l)	0.35	0.24	0.56	0/12					0.35	0.24	0.56	0/12	
目	全 燐 (mg/l)	0.033	0.023	0.065	1/12					0.033	0.023	0.065	1/12	
	全 亜 鉛 (mg/l)	0.002	0.001	0.003	-/4					0.002	0.001	0.003	-/4	
	L A S (mg/l)			<0.0006	-/1							<0.0006	-/1	
	カ ト ゜ ミ ウ ム (mg/l)			<0.0003	0/4							<0.0003	0/4	
	全 シ 7 ン (mg/l)			<0.1	0/4							<0.1	0/4	
	鉛 (mg/l)			<0.005	0/4							<0.005	0/4	
	六 価 ク ロ ム (mg/l)	2	45.51	<0.01	0/4					2		<0.01	0/4	
	砒 素 (mg/l)	0.001	<0.001	0.001	0/6					0.001	<0.001	0.001	0/6	
	総 水 銀 (mg/l)			<0.0005	0/4							<0.0005	0/4	
	アルキル水 銀 (mg/l)			(0.0005	0.72							/0.0005	0.72	
健	P C B (mg/l)			<0.0005	0/2							<0.0005	0/2	
	シ * ク ロ ロ メ タ ン (mg/l)			<0.002	0/2							<0.002	0/2	
	四塩化炭素(mg/l)			<0.0002	0/2							<0.0002	0/2	
康	1,2- シ			<0.0004	0/2							<0.0004 <0.002	0/2	
	シス -1,2- シ * クロロエチレン (mg/l)			<0.002	0/2							<0.002	0/2	
	1,1,1- トリクロロエタン (mg/l)			<0.004	0/2							<0.004	0/2	
項	1,1,2- トリクロロエタン (mg/l)			<0.0006	0/2							<0.0006	0/2	
	トリクロロエチレン (mg/l)			<0.001	0/2							<0.001	0/2	
	テトラクロロエチレン (mg/l)			<0.001	0/2							<0.001	0/2	
目	1,3- シ			<0.0002	0/2							<0.0002	0/2	
	チ ウ ラ ム (mg/l)			<0.0006	0/2							<0.0006	0/2	
	シマシ ・ ン (mg/l)			<0.0003	0/2							<0.0003	0/2	
	チオヘ゛ンカルフ゛(mg/l)			<0.002	0/2							<0.002	0/2	
	へ ・ ン セ ・ ン (mg/l)			<0.001	0/2							<0.001	0/2	
	セ レ ン (mg/l)			<0.001	0/2							<0.001	0/2	
	硝酸性窒素及び亜硝酸性窒素(mg/l)	0.06	<0.02	0.09	0/2					0.06	<0.02	0.09	0/2	
	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/2							<0.005	0/2	
4.+	銅 (mg/l)			<0.04	-/4							<0.04	-/4	
特殊	鉄 (溶 解 性) (mg/l)													
項目	マ ン カ [*] ン (溶 解 性) (mg/l)													
Ľ	7 П Д (mg/l)			<0.03	-/4							<0.03	-/4	
	E P N (mg/l)													
	フ ェ ノ ー ル (mg/l)			<0.001	-/4							<0.001	-/4	
	クロロホルム (mg/l)													
	ホルムアルデヒド (mg/l)													
	アンモニア性 窒 素 (mg/l)			<0.06	-/6							<0.06	-/6	
	硝 酸 性 窒 素 (mg/l)	0.05	<0.01	0.08	-/2					0.05	<0.01	0.08	-/2	
	亜 硝 酸 性 窒 素 (mg/l)	0.01	<0.01	0.01	-/2					0.01	<0.01	0.01	-/2	
	リン酸性リン (mg/l)	0.01	0.01	0.02	-/6					0.01	0.01	0.02	-/6	
	濁 度 (mg/l)													
	塩 化 物 イ オ ン (mg/l)	16000	14000	18000	-/6					16000	14000	18000	-/6	

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名					#	和歌 L	山 海 垣	ŧ				
	地 点 名	St.	13(上層)([A【補】, Ⅱ【	[補])	St.	13(下層)((A【補】, Ⅱ【	補】)	St.	13(全層)	(A【補】, Ⅱ【	補】)
	測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y
	р Н		8.1	8.2	0/12						8.1	8.2	0/12
	D O (mg/l)	8	6.7	9.5	3/12	7.8	6.3	9.2	4/12	7.9	6.3	9.5	7/24
生		(1.5)								(1.5)		000000000000000000000000000000000000000	
活	C O D (mg/l)	1.5	1.3	1.8	0/12					1.5	1.3	1.8	0/12
環	S S (mg/l)	1	<1	1	-/12					1	<1	1	-/12
境	大 腸 菌 数 (CFU/100ml)												
	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	-/6							<0.5	-/6
項	全窒素(mg/l)	0.19	0.15	0.24	0/12					0.19	0.15	0.24	0/12
目	全 燐 (mg/l)	0.018	0.011	0.026	0/12					0.018	0.011	0.026	0/12
	全 亜 鉛 (mg/l)	0.001	<0.001	0.001	-/4					0.001	<0.001	0.001	-/4
	L A S (mg/l)												
	カト ・ ミ ウ ム (mg/l)			<0.0003	0/4							<0.0003	0/4
	全 シ ァ ン (mg/l)			<0.1	0/4							<0.1	0/4
	鉛 (mg/l)			<0.005	0/4							<0.005	0/4
	六価り口ム (mg/l)	0.001	(0.001	<0.01	0/4					0.004	(0.001	<0.01	0/4
	砒 素 (mg/l)	0.001	<0.001	0.001	0/6					0.001	<0.001	0.001	0/6
	総 水 銀 (mg/l)			<0.0005	0/4							<0.0005	0/4
	アルキル水 銀 (mg/l) P C B (mg/l)												
健	シ ^ ク ロ ロ メ タ ン (mg/l)												
	四 塩 化 炭 素 (mg/l)												
	1,2- シ												
康	1,1- シ * クロロエチレン (mg/l)												
	シス -1,2- シ゛クロロエチレン (mg/l)												
	1,1,1- トリクロロエタン (mg/l)												
項	1,1,2- トリクロロエタン (mg/l)											0000000	
	トリクロロエチレン (mg/l)												
	テトラクロロエチレン (mg/l)												
目	1,3- シ												
	チ ウ ラ ム (mg/l)												
	シ マ シ ・ ン (mg/l)												
	チ オ へ ゛ ン カ ル フ ゛ (mg/l)												
	へ * ン セ * ン (mg/l)												
	セ レ ン (mg/l)												
	硝酸性窒素及び亜硝酸性窒素(mg/l)												
	1,4- シ * オ キ サ ン (mg/l)						1						
特	銅 (mg/l)			<0.04	-/4							<0.04	-/4
殊	鉄 (溶 解 性) (mg/l)										-		
項目	マンカ゛ン(溶解性)(mg/l)												
-	ク □ Δ (mg/l)			<0.03	-/4							<0.03	-/4
	E P N (mg/l)												
	7 I / - ル (mg/l)												
	クロロホルム (mg/l)										<u> </u>		
	ホルムアルデヒド (mg/l) マンエ・マ性 突 麦 (mg/l)			<0.06	_/6							<0.06	_/6
	アンモニア性窒素 (mg/l) 硝酸性窒素 (mg/l)			₹0.06	-/6							\∪.∪6	-/6
	明 酸 性 窒 素 (mg/l) 亜 硝 酸 性 窒 素 (mg/l)												
	里 明 段 住 至 条 (IIIg/I) リン 酸 性 リン (mg/I)	0.01	<0.01	0.01	-/6					0.01	<0.01	0.01	-/6
	<u> </u>	3.01	.0.01	3.01	, ,					0.01	(0.01	5.51	, 3
	塩 化 物 イ オ ン (mg/l)	18000	15000	18000	-/6					18000	15000	18000	-/6
		. 5000	.0000		, 3	l	1			.0000	.0000	.0000	, 3

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名					#	和 歌 L	山 海 均	t					
	地 点 名	5	St. 14 (B[基】,Ⅱ【補】)	St.	15(上層)([A【補】, Ⅱ【	補】)	St. 15(下層) (A【補】, II【補】)				
	測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	
	р Н		8.1	8.3	0/12		8.1	8.3	0/12			000000000		
	D O (mg/l)	8.1	6.4	9.9	0/12	8.2	6.5	9.7	4/12	7.9	4.3	10	3/12	
生		(1.9)				(1.8)								
活	C O D (mg/l)	1.8	1.2	2.6	0/12	1.7	1.4	2.2	1/12					
環	S S (mg/l)	1.8	1	3	-/12	1	<1	1	-/12					
境	大 腸 菌 数 (CFU/100ml)													
	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	-/6			<0.5	-/6					
項	全窒素(mg/l)	0.29	0.17	0.65	1/12	0.22	0.18	0.27	0/12					
目	全 燐 (mg/l)	0.03	0.015	0.097	1/12	0.022	0.01	0.061	1/12		ļ	8		
	全 亜 鉛 (mg/l)	0.002	<0.001	0.004	-/4	0.001	<0.001	0.001	-/4		ļ			
-	L A S (mg/l)			<0.0006	-/1							80000 800		
	カト * ミウム (mg/l)			<0.0003	0/4			<0.0003	0/4					
	全 シ ア ン (mg/l)			<0.1	0/4			<0.1	0/4					
	鉛 (mg/l)			<0.005	0/4			<0.005	0/4					
	六価り口ム (mg/l) 砒素 (mg/l)	0.001	<0.001	<0.01 0.001	0/4	0.001	<0.001	<0.01 0.001	0/4					
	如 素 (mg/l) 総 水 銀 (mg/l)	0.001	\0.001	<0.001	0/6	0.001	\U.UU1	<0.0005	0/6					
	ポンパ			\0.0000	0/4			₹0.0000	0/4					
	P C B (mg/l)			<0.0005	0/2									
健	シ [*] ク ロ ロ メ タ ン (mg/l)			<0.002	0/2									
	四 塩 化 炭 素 (mg/l)			<0.0002	0/2									
	1,2- シ [*] クロロエタン (mg/l)			<0.0004	0/2									
康	1,1- シ * クロロエチレン (mg/l)			<0.002	0/2									
	シス -1,2- シ゛クロロエチレン (mg/l)			<0.004	0/2									
	1,1,1- ト リ ク ロ ロ エ タ ン (mg/l)			<0.01	0/2							0000000		
項	1,1,2- トリクロロエタン (mg/l)			<0.0006	0/2									
	トリクロロエチレン (mg/l)			<0.001	0/2									
	テトラクロロエチレン (mg/l)			<0.001	0/2									
目	1,3- シ゛クロロフ゜ロヘ゜ン (mg/l)			<0.0002	0/2									
	チ ウ ラ ム (mg/l)			<0.0006	0/2									
	シマシ ・ ン (mg/l)			<0.0003	0/2									
	チオへ゛ンカルフ゛(mg/l)			<0.002	0/2									
	へ * ン セ * ン (mg/l)			<0.001	0/2									
	セ レ ン (mg/l)			<0.001	0/2									
	硝酸性窒素及び亜硝酸性窒素(mg/l)	0.04	<0.02	0.05	0/2									
<u></u>	1,4- シ * オ キ サ ン (mg/l)			<0.005	0/2									
特	銅 (mg/l)			<0.04	-/4			<0.04	-/4		-			
殊項	鉄 (溶 解 性) (mg/l)													
目	マンカ゛ン(溶解性)(mg/l)			(2.2.				(5.5.						
-	7 □ Δ (mg/l)			<0.03	-/4		1	<0.03	-/4		 			
	E P N (mg/l)			/0.001	. //									
	フェノール (mg/l) クロロホルム (mg/l)			<0.001	-/4									
	クロロホルム (mg/l) ホルムアルデヒド (mg/l)													
	アンモニア性窒素 (mg/l)			<0.06	-/6			<0.06	-/6					
	アフェーア性 室 素 (mg/l) 硝 酸 性 窒 素 (mg/l)	0.03	<0.01	0.06	-/6 -/2			\0.00	70					
	明 政 庄 至 系 (mg/l) 亜 硝 酸 性 窒 素 (mg/l)	5.00	\U.U.I	<0.04	-/2 -/2									
	型 明 版 は 里 宗 (mg/l) リ ン 酸 性 リ ン (mg/l)	0.01	<0.01	0.02	-/6	0.01	<0.01	0.01	-/6					
					, ,				. •					
	塩 化 物 イ オ ン (mg/l)	18000	16000	18000	-/6	18000	17000	18000	-/6					
	_ :- :- : : : : : : : : : : : : : : : :			1							1	K.		

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

	海 域 名					#	和 歌 山	山 海 均	t					
	地 点 名	St.	15(全層)([A【補】, Ⅱ【	[補])	St.	16(上層)(A【補】, Ⅱ【	基])	St.	St. 16(下層) (A【補】, II【基】) 平均 最小値 最大値 x.			
	測定項目	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	平均	最小値	最大値	x/y	
	р Н		8.1	8.3	0/12		8.1	8.3	0/12					
	D O (mg/l)	8.1	4.3	10	7/24	8.2	7	9.2	3/12	7.3	5.6	9	8/12	
生		(1.8)				(1.7)						000000000000000000000000000000000000000		
活	C O D (mg/l)	1.7	1.4	2.2	1/12	1.7	1.4	2.2	1/12					
環	S S (mg/l)	1	<1	1	-/12	1.2	<1	3	-/12			00000000		
	大 腸 菌 数 (CFU/100ml)													
境	N - へ キ サ ン 抽 出 物 質 (mg/l)			<0.5	-/6			<0.5	-/6					
項	全 窒 素 (mg/l)	0.22	0.18	0.27	0/12	0.19	0.14	0.26	0/12					
目	全 燐 (mg/l)	0.022	0.01	0.061	1/12	0.019	0.01	0.026	0/12					
	全 亜 鉛 (mg/l)	0.001	<0.001	0.001	-/4	0.001	<0.001	0.002	-/4					
	L A S (mg/l)											*		
	カト ・ ミ ウ ム (mg/l)			<0.0003	0/4			<0.0003	0/4					
	全 シ ア ン (mg/l)			<0.1	0/4			<0.1	0/4					
	鉛 (mg/l)			<0.005	0/4			<0.005	0/4					
	六 価 ク ロ ム (mg/l)			<0.01	0/4			<0.01	0/4					
	砒 素 (mg/l)	0.001	<0.001	0.001	0/6	0.001	<0.001	0.001	0/6		<u> </u>			
	総 水 銀 (mg/l)			<0.0005	0/4			<0.0005	0/4					
	アルキル水 銀(mg/l)													
健	P C B (mg/l)													
	シ * ク ロ ロ メ タ ン (mg/l)													
	四 塩 化 炭 素 (mg/l) 1,2- シ・クロロエタン (mg/l)													
康	1,2- シ													
	シス -1,2- シ * クロロエチレン (mg/l)													
	1,1,1- トリクロロエタン (mg/l)													
項	1,1,2- トリクロロエタン (mg/l)													
	トリクロロエチレン (mg/l)													
	テトラクロロエチレン (mg/l)													
目	1,3- シ													
	チ ウ ラ ム (mg/l)													
	シ マ シ ゜ ン (mg/l)													
	チオヘ゛ンカルフ゛(mg/l)													
	へ ・ ン セ ・ ン (mg/l)													
	セ レ ン (mg/l)													
	硝酸性窒素及び亜硝酸性窒素(mg/l)													
	1,4- シ * オ キ サ ン (mg/l)													
4+	銅 (mg/l)			<0.04	-/4			<0.04	-/4					
特殊	鉄 (溶 解 性) (mg/l)													
項目	マンカ゛ン(溶 解 性) (mg/l)													
	7 П Д (mg/l)			<0.03	-/4			<0.03	-/4					
	E P N (mg/l)													
	フェ ノ ー ル (mg/l)													
	ク ロ ロ ホ ル ム (mg/l)													
	ホルムアルデヒド (mg/l)													
	ア ン モ ニ ア 性 窒 素 (mg/l)			<0.06	-/6			<0.06	-/6					
	硝 酸 性 窒 素 (mg/l)													
	亜 硝 酸 性 窒 素 (mg/l)													
	リン酸性リン (mg/l)	0.01	<0.01	0.01	-/6	0.01	<0.01	0.01	-/6					
	濁 度 (mg/l)													
	塩 化 物 イ オ ン (mg/l)	18000	17000	18000	-/6	18000	17000	19000	-/6			00000		

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

海 域 名	和歌山海域	
地点名	St. 16(全層) (A【補】, II【基】)	
測定項目	平均 最小値 最大値 x/	⁄y
р Н	8.1 8.3 0/	12
D O (mg	 	
生	(1.7)	
活 C O D (mg	/1) 1.7 1.4 2.2 1/	12
環 S S (mg	/1) 1.2 <1 3 -/	12
大 腸 菌 数 (CFU/100	nl)	
境 N - へ キ サ ン 抽 出 物 質 (mg	/1) <0.5 -/	′ 6
項 全 窒 素 (mg	/1) 0.19 0.14 0.26 0/	12
目 全 燐 (mg	/1) 0.019 0.01 0.026 0/	12
全 亜 鉛 (mg	/1) 0.001 <0.001 0.002 -/	/ 4
L A S (mg	/1)	
カト ° ミゥム (mg	/1) <0.0003 0/	/4
全 シ 7 ン (mg	/1) <0.1 0/	/4
鉛 (mg	/1) <0.005 0/	/4
六価り口ム (mg		/4
砒 素 (mg		
総 水 銀 (mg		/4
アルキル水 銀 (mg	 	
健 P C B (mg	 	
シ * ク ロ ロ メ タ ン (mg	 	
四塩化炭素(mg	 	
康	 	
1,1- シ ゚ ク ロ ロ エ チ レ ン (mg		
シス -1,2- シ ^ クロロエチレン (mg 1,1,1- トリクロロエタン (mg		
項 1,1,2-トリクロロエタン (mg		
トリクロロエチレン (mg		
目 1,3- シ・クロロフ・ロヘ・ン (mg		
э т </th <th></th> <th></th>		
シマシ * ン (mg		
チオヘ゜ンカルフ゜(mg	 	
へ ・ ン セ ・ ン (mg	/1)	
セ レ ン (mg	/1)	
硝酸性窒素及び亜硝酸性窒素(mg/l)		
1,4- シ * オ キ サ ン (mg	/1)	
銅 (mg	/1) <0.04 -/	⁄4
殊 鉄 (溶 解 性) (mg	/1)	
項 マンカ・ン(溶解性) (mg	/1)	
ク D Δ (mg		/4
E P N (mg		
7 I / - N (mg		
クロロホルム (mg		
ホルムアルデヒド (mg		/O
アンモニア性窒素(mg	 	6
可酸性窒素(mg	 	
亜硝酸性窒素(mg	 	/ 6
リン酸性リン (mg 濁 度 (mg		U
塩化物イオン(mg		⁄6
	/1/ 18000 17000 19000 -/	U

(備考) x:環境基準に適合しない日数 y:総測定日数 ()内は75%値 表層は水深 0.5m、中層は水深 2.0m、下層は海底直上 1.0m で採水。無表記は表層で採水。

2-39 地下水の概況調査

① 調査結果概要

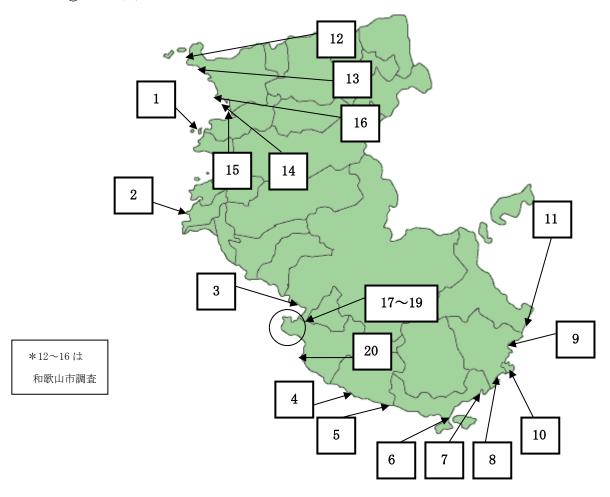
調査機関	近畿地	方整備局	ļ		和歌	(山市	環境基準
調査井戸数		1	3	3		80	単位:mg/L
調査物質	調査数	超過数	調査数	超過数	調査数	超過数	
カドミウム	1	0	32	0	30	0	0.003以下
全シアン	1	0	32	0	30	0	検出されないこと ※1
鉛	1	0	32	0	30	0	0.01以下
六価クロム	1	0	32	0	30	0	0.02以下
砒素	1	0	32	0	30	0	0.01以下
総水銀	1	0	32	0	30	0	0.0005以下
PCB	1	0	32	0	30	0	検出されないこと ※1
ジクロロメタン	1	0	32	0	30	0	0.02以下
四塩化炭素	1	0	32	0	30	0	0.002以下
1, 2-ジクロロエタン	1	0	32	0	30	0	0.004以下
1, 1ージクロロエチレン	1	0	32	0	30	0	0.1以下
1, 2-ジクロロエチレン	1	0	32	0	30	0	0.04以下
1, 1, 1ートリクロロエタン	1	0	32	0	30	0	1以下
1, 1, 2-トリクロロエタン	1	0	32	0	30	0	0.006以下
トリクロロエチレン	1	0	32	0	30	0	0.01以下
テトラクロロエチレン	1	0	32	0	30	0	0.01以下
1, 3ージクロロプロペン	1	0	32	0	30	0	0.002以下
チウラム	1	0	32	0	30	0	0.006以下
シマジン	1	0	32	0	30	0	0.003以下
チオベンカルブ	1	0	32	0	30	0	0.02以下
ベンゼン	1	0	32	0	30	0	0.01以下
セレン	1	0	32	0	30	0	0.01以下
硝酸性窒素及び亜硝酸性窒素	1	0	32	0	30	0	10以下
ふっ素	1	0	32	0	30	0	0.8以下
ほう素	1	0	32	0	30	0	1以下
クロロエチレン(別名塩化ビニル	1	0	32	0	30	0	0.002以下
又は塩化ビニルモノマー)							
1, 4-ジオキサン	1	0	32	0	30	0	0.05以下
PFOS及びPFOA ^{※2}	0	0	32	0	30	3	50 ng/L 以下
							(指針値)
合計超過地点数		0		0		3	

^{※1「}検出されないこと」とは、定められた方法により測定した場合において、その結果が当該方法の定量限界を下回ることをいう。

^{※2} ペルフルオロオクタンスルホン酸 (PFOS)、ペルフルオロオクタン酸 (PFOA)

② 調査地点

市		海草郡	3	伊都郡	3	有田郡	ß
和歌山市	31	紀美野町	1	かつらぎ町	-	湯 浅 町	1
海南市	1			九度山町	1	広 川 町	1
橋本市	1			高 野 町	1	有田川町	1
有 田 市	-						
御坊市	1						
田辺市	6						
新 宮 市	-						
紀の川市	3						
岩出市	1						
合計	44		1		2		3
ПРІ							O
日高郡		西牟婁		東牟婁			
		西牟婁		東牟婁和那智勝浦町			
日高郡	3		郡		郡		
月高郡 美 浜 町	-	白 浜 町	郡 -	那智勝浦町	郡 2		
日高郡 美 浜 町 日 高 町	- 1	白 浜 町上富田町	部 - 1	那智勝浦町 太 地 町	部 2 1		
日高郡 美 浜 町 日 高 町 由 良 町	- 1 1	白 浜 町上富田町	部 - 1	那智勝浦町 太 地 町 古座川町	部 2 1		
日高郡 美 浜 町 日 高 町 由 良 町 印 南 町	- 1 1 2	白 浜 町上富田町	部 - 1	那智勝浦町 太 地 町 古座川町 北 山 村	部 2 1 1 -		
日高郡 美 町 日 高 町 日 良 町 印 みなべ町	1 1 2	白 浜 町上富田町	部 - 1	那智勝浦町 太 地 町 古座川町 北 山 村	部 2 1 1 -		
日高郡 美 町 日 高 町 日 良 町 印 みなべ町	1 1 2	白 浜 町上富田町	部 - 1	那智勝浦町 太 地 町 古座川町 北 山 村	部 2 1 1 -		
日高郡 美 町 日 高 町 日 良 町 印 みなべ町	1 1 2	白 浜 町上富田町	部 - 1	那智勝浦町 太 地 町 古座川町 北 山 村	部 2 1 1 -	合計	3


注1 和歌山市調査機関内訳(近畿地方整備局1、和歌山市30)

2-40 地下水の定期モニタリング調査結果

調査物質	調査数	調査市町村	測定値 (mg/L)	環境基準
rll =	0	和歌山市	0.016	0.01. /1017
础 素	2	串 本 町	0.014	0.01mg/L以下
鉛	1	和歌山市	<0.005	0.01mg/L以下
		和歌山市	0. 1	
		和歌山市	6. 1	
		和歌山市	10	
		和歌山市	3. 3	
		新宮市	18	
硝酸性窒素及び亜硝酸性窒素	12	紀の川市	19	10mg/L以下
		紀の川市	13	10mg/ 2i// 1
		紀の川市	10	
		かつらぎ町	12	
		有田川町	11	
		由良町	11	
		串 本 町	7. 4	

2-41 水浴場調査結果一覧

① 水浴場調査地点図

和歌山県調査分

番号	水浴	場名称	所在地	開設前 判定	開設中 判定
1	地ノ島	じのしま	有田市	AA	AA
2	産湯	うぶゆ	日高町	AA	AA
3	田辺	たなべ	mm±	AA	Α
3	扇ヶ浜	おうぎがはま	田辺市		
4	すさみ	すさみ	すさみ町	Α	AA
5	里 野	さとの	すさみ町	Α	-
6	橋 杭	はしぐい	串本町	AA	AA
7	田原	たはら	串本町	Α	Α
8	玉の浦	たまのうら	那智勝浦町	AA	AA
9	那 智	なち	那智勝浦町	AA	AA
10	くじら浜	くじらはま	太地町	AA	Α
11	三輪崎	みわさき	新宮市	AA	AA

※令和2年度から、那智勝浦町の宇久井、湯川水浴場は 開設していません。

和歌山県調査分

番号	水浴	場名称	所在地	開設前 判定	開設中 判定
17	江津良	えづら	白浜町	AA	AA
18	臨海浦	りんかいうら	白浜町	AA	AA
19	白良浜	しららはま	白浜町	AA	AA
20	椿	つばき	白浜町	Α	AA

和歌山市調査分

	·· · ·				
番号	水浴	場名称	所在地	開設前 判定	開設中 判定
12	加太	かだ	和歌山市	Α	Α
13	磯の浦	いそのうら	和歌山市	Α	AA
14	片男波	かたおなみ	和歌山市	AA	Α
15	浜の宮	はまのみや	和歌山市	Α	Α
16	浪早	なみはや	和歌山市	AA	Α

② 水浴場調査結果一覧

	調査年度				令和6年	度(開設前)			令和6年度(開設中)					
		調査項目	判定	ふん便性大腸 菌群数	COD	油 膜	透明度	病原性 大腸菌	判定	ふん便性大腸 菌群数	COD	油 膜	透明度	病原性 大腸菌
水	 浴 場 名 称	所在地		(個/100ml)	(mg/I)	(有無)	(m)	O-157		(個/100ml)	(mg/I)	(有無)	(m)	O-157
加太	かだ	和歌山市	A	2	1.3	無	全透(>1)	不検出	Α	9	1.3	無	全透(>1)	不検出
磯の浦	いそのうら	和歌山市	Α	6	1.6	無	全透(>1)	不検出	AA	<2	1.3	無	全透(>1)	不検出
片男波	かたおなみ	和歌山市	AA	<2	1.5	無	全透(>1)	不検出	Α	3	1.3	無	全透(>1)	不検出
浜の宮	はまのみや	和歌山市	Α	20	2.0	無	全透(>1)	不検出	Α	21	1.9	無	全透(>1)	不検出
浪 早	なみはや	和歌山市	AA	<2	1.7	無	全透(>1)	不検出	Α	4	1.2	無	全透(>1)	不検出
地ノ島	じのしま	有田市	AA	<2	1.4	無	全透(>1)	不検出	AA	<2	1.1	無	全透(>1)	不検出
産湯	うぶゆ	日高町	AA	<2	1.2	無	全透(>1)	不検出	AA	<2	1.0	無	全透(>1)	不検出
田辺扇ヶ浜	たなべおうぎがはま	田辺市	AA	<2	1.5	無	全透(>1)	不検出	Α	49	1.3	無	全透(>1)	不検出
江津良	えづら	白浜町	AA	<2	1.0	無	全透(>1)	不検出	AA	<2	1.5	無	全透(>1)	不検出
臨海浦	りんかいうら	白浜町	AA	<2	1.1	無	全透(>1)	不検出	AA	<2	1.4	無	全透(>1)	不検出
白良浜	しららはま	白浜町	AA	<2	0.7	無	全透(>1)	不検出	AA	<2	1.6	無	全透(>1)	不検出
椿	つばき	白浜町	Α	<2	1.1	無	全透(>1)	不検出	AA	<2	0.7	無	全透(>1)	不検出
すさみ	すさみ	すさみ町	Α	12	1.7	無	全透(>1)	不検出	AA	<2	1.4	無	全透(>1)	不検出
里 野	さとの	すさみ町	Α	21	1.3	無	全透(>1)	不検出	-	-	-	-	-	-
橋 杭	はしぐい	串本町	AA	<2	1.2	無	全透(>1)	不検出	AA	<2	0.8	無	全透(>1)	不検出
田原	たはら	串本町	Α	10	1.5	無	全透(>1)	不検出	Α	7	0.7	無	全透(>1)	不検出
玉の浦	たまのうら	那智勝浦町	AA	<2	1.1	無	全透(>1)	不検出	AA	<2	0.8	無	全透(>1)	不検出
那智	なち	那智勝浦町	AA	<2	0.8	無	全透(>1)	不検出	AA	<2	0.6	無	全透(>1)	不検出
くじら浜	くじらはま	太地町	AA	<2	1.4	無	全透(>1)	不検出	Α	2	0.6	無	全透(>1)	不検出
三輪崎	みわさき	新宮市	AA	<2	1.4	無	全透(>1)	不検出	AA	<2	0.6	無	全透(>1)	不検出

③ 水浴場水質判定基準

- 1. 判定については、下記の表に基づいて以下のとおりとする。
 - (1) ふん便性大腸菌群数、油膜の有無、COD 又は透明度のいずれかの項目が「不適」であるものを、「不適」な水浴場とする。
 - (2) 「不適」でない水浴場について、ふん便性大腸菌群数、油膜の有無、COD及び透明度によって、「水質 AA」、「水質 A」、「水質 B」 あるいは「水質 C」を判定し、「水質 AA」及び「水質 A」であるものを「適」、「水質 B」及び「水質 C」であるものを「可」とする。
 - ・ 各項目の全てが「水質 AA」である水浴場を「水質 AA」とする。
 - ・ 各項目の全てが「水質 A」以上である水浴場を「水質 A」とする。
 - ・ 各項目の全てが「水質 B」以上である水浴場を「水質 B」とする。
 - ・これら以外のものを「水質C」とする。

区分	項目	ふん便性大腸菌群数	油膜の有無	COD	透明度
適	水 質 AA	不 検 出 (検出下限2個/100mL)	油膜が認められない	2mg/L 以下 (湖沼は 3mg/L 以下)	全透 (1m 以上)
旭	水 質 A	100 個/100mL 以下	油膜が認められ ない	2mg/L 以下 (湖沼は 3mg/L 以下)	全透 (1m 以上)
可	水 質 B	400 個/100mL 以下	常時は油膜が認 められない	5mg/L 以下	1m 未満 ~50cm 以上
HJ	水 質 C	1,000 個/100m1 以下	常時は油膜が認 められない	8mg/L 以下	1m 未満 ~50cm 以上
不	「適	1,000個/100mlを超えるもの	常時油膜が認め られる	8mg/L 超	50cm 未満*
	削定 7法	付表1の第1に定める方法	目視による観察	日本工業規格 K0102 の 17 に定める方法	付表2に定める方 法

(注) 判定は、同一水浴場に関して得た測定値の平均による。

「不検出」とは、平均値が検出下限未満のことをいう。

透明度(*の部分)に関しては、砂の巻き上げによる原因は評価の対象外とすることができる。

- 2. 「改善対策を要するもの」については以下のとおりとする。
 - (1) 「水質 C」と判定されたもののうち、ふん便性大腸菌群数が、400 個/100mL を超える測定値が 1 以上あるもの。
 - (2) 油膜が認められたもの。

2-42 底質調査結果一覧

	項目	カドミウム	鉛	六価クロム	砒素	総水銀	銅	亜鉛	総クロム		強熱減量
水域名											
	単位地点名				mg/kg-	dry				mg/g-d r y	%
橋本川	橋本	0.06	10	<0.5	4. 2	0.04	10	55	43	<0.01	1. 53
貴志川	諸井橋	0.06	9.8	<0.5	3.6	0.04	30	69	110	<0.01	1. 42
日方川	新湊橋	0. 17	22	<0.5	5. 4	0.11	53	150	490	0. 26	4. 11
海南海域	St. 2	0. 18	23	0.7	7. 6	0.17	62	150	160	0. 11	4. 22
由良海域	St. 5	<0.05	15	0.8	8.8	0.26	21	89	33	0.02	5. 41

2-43 ダム貯水池等の水質調査結果一覧

湖沼名	採取日時	На	DO	COD	大腸菌数 (CFU/100			ال mg)		全窒素/	電気伝導率
湖/121	沐双口时	рп	(mg/L)	(mg/L)	mL)	アンモニア 性窒素	全窒素	リン酸性 リン	全リン	全リン	(µS/cm)
桜池	R6.6.20	8.7	10	5.3	20	<0.06	0.82	<0.01	0.016	51	120
(紀の川市)	R6.10.10	7.6	7.3	6.1	4	<0.06	0.32	<0.01	0.029	11	130
山田ダム貯水池	R6.6.20	10.3	15	4.8	0	<0.06	0.46	0.01	0.026	18	140
(紀美野町、紀の川市)	R6.10.10	7.3	7.0	5.7	8	<0.06	0.39	<0.01	0.015	26	130
一の枝貯水池	R6.6.20	7.1	8.9	1.2	32	<0.06	0.21	<0.01	<0.003	70	34
(高野町)	R6.10.10	7.6	8.4	2.8	21	<0.06	0.40	<0.01	0.007	57	34
二川ダム貯水池	R6.6.20	8.3	9.9	1.2	2	<0.06	0.29	<0.01	0.005	58	87
(有田川町)	R6.10.10	7.9	9.2	2.0	1	<0.06	0.45	<0.01	0.008	56	93
広川ダム貯水池	R6.6.20	7.8	8.9	1.9	6	<0.06	0.34	<0.01	0.003	113	87
(広川町)	R6.10.10	7.3	6.7	2.3	16	<0.06	0.47	<0.01	0.010	47	84
切目川ダム貯水池	R6.6.12	7.5	8.7	1.5	0	<0.06	0.12	<0.01	0.005	24	62
(印南町)	R6.10.1	7.1	9.3	2.5	1	<0.06	0.23	<0.01	0.005	46	68
椿山ダム貯水池	R6.6.12	7.4	9.0	1.2	2	<0.06	0.16	<0.01	0.008	20	60
(日高川町)	R6.10.1	7	7.7	1.4	6	<0.06	0.25	<0.01	0.010	25	75
殿山(合川)ダム貯水池	R6.6.12	8.0	9.9	1.3	4	<0.06	0.13	<0.01	0.003	43	49
(田辺市)	R6.10.1	7.0	8.5	1.3	2	<0.06	0.18	<0.01	0.006	30	57
七川ダム貯水池	R6.6.5	8.2	9.6	3.0	1	<0.06	0.13	<0.01	0.010	13	30
(古座川町)	R6.10.3	7.3	9.7	2.6	26	<0.06	0.35	<0.01	0.014	25	36
小森ダム貯水池	R6.6.5	7.0	9.4	2.0	2	<0.06	0.12	<0.01	0.006	20	32
(北山村)	R6.10.3	6.8	8.1	2.0	15	<0.06	0.22	<0.01	0.013	17	33
七色ダム貯水池	R6.6.5	7.2	9.6	2.1	4	<0.06	0.09	<0.01	0.006	15	27
(北山村)	R6.10.3	7.1	8.7	1.8	2	<0.06	0.13	<0.01	0.011	12	33

^{*}窒素による富栄養化について注意を要する条件【リン: 0.02 mg/1 以上かつ窒素/リン=20 以下】

2-44 令和6年度水質事故一覧

一覧表

日付	場所 (住所)	公共用水域区分	水質状況区分	原因・その他特記事項	魚の被害数
4月7日	かつらぎ町丁ノ町	水路	油	農業用ハウスの灯油 水抜き栓締め忘れ	0
5月2日	海南市下津町上	水路	油	油流出、原因不明	0
5月5日	印南町印南原	JII	魚へい死	散布後の農薬の余りや容器洗い水の投棄	1000
5月20日	橋本市隅田町山内	水路	油	車両事故による油流出	0
5月23日	かつらぎ町妙寺	水路	濁水・色水・排水	築野食品からの排水と思われる	0
5月24日	田辺市上秋津	Л	魚へい死	鮎300匹へい死、原因不明	300
6月13日	日高町高家	JII	魚へい死	魚数百匹へい死、原因不明	数百
6月14日	有田市箕島	Л	魚へい死	小魚1000匹?へい死、原因不明	約1000
6月19日	田辺市下万呂	水路	油	油流出、原因不明	0
6月23日	有田市箕島	水路	濁水・色水・排水	クリスタルバイオレットによる着色異常(紫)	0
6月24日	美浜町和田	JII	油	日高土地改良区の入山堰の操作盤から油漏れ	0
7月1日	広川町上中野	水路	濁水・色水・排水	白濁。石灰硫黄合剤と思われるが不明	0
7月5日	有田川町熊井 (湯浅町湯浅)	JII	魚へい死	魚100匹へい死、原因不明	100
7月11日	和歌山市上三毛	Л	油	一連の雨で沈殿池からあふれ出たもの。	無
7月17日	御坊市湯川町富安	水路	油	(株)救援敷地内での事故車処理時に油流出	0
7月17日	上富田町岩崎	Л	魚へい死	ザリガニ100匹へい死、原因不明	100
7月25日	紀の川市東三谷	Л	油	油流出、原因不明	0
7月27日	紀美野町中田 (棚田付近)	Л	濁水・色水・排水	県工事でのセメント関連物質が流出して河川が 白濁	0
7月29日	和歌山市西浜	海	油	人為。	無
8月20日	御坊市塩屋町南塩屋	池	魚へい死	コイ・フナ100匹へい死、原因不明	100
8月20日	みなべ町東本庄	水路	油	油流出、原因不明	0
9月13日	橋本市三石台	水路	その他	マンションの配管破損	0
10月5日	有田川町垣倉	Л	濁水・色水・排水	川に浮ぶ袋の内容物(詳細不明)	0
10月22日	有田川町金屋	水路	油	町工事でのボイラー室解体時に油流出	0
12月6日	和歌山市北出島	水路	油	ポリタンク洗浄によるもの。	無
12月10日	和歌山市貴志	水路	油	オイルを溜めるパンから溢れ出たもの。	無
12月25日	田辺市稲成町荒光	水路	油	灯油積載軽トラックが水路に落ちたことによる 灯油漏れ	0
1月6日	有田川町船坂	水路	油	民家の灯油タンクが破損し、灯油が地下浸透。 じわじわと水路に流出した。	0
1月27日	箕島駅裏	Л	油	白い膜状や泡のようなものが流れていた。原因 不明。	0
2月17日	かつらぎ町広口	Л	濁水・色水・排水	果樹園に石灰硫黄合剤を散布中、ホースが抜け て流出し、白濁。	0

[※] 魚の被害数は目視による概数

② 事故概要別集計表

(ア) 発生場所別集計表(保健所管内別)

発生場所	全件数	和歌山市	岩出	橋本	海南	湯浅	御坊	田辺	新宮	串本支 所	奈良県	大阪府	その他
Ш	13	1	1	1	1	4	3	2					
水路	15	2		4	1	4	1	3					
川・水路	0												
池	1						1						
川・池	0												
田	0												
ダム	0												
海(河口)	0												
海・(水路・河川)	0												
港湾	0												
海	1	1											
合計	30	4	1	5	2	8	5	5	0	0	0	0	0

(イ) 発生月別集計表(保健所管内別)

発生月	全件数	和歌山市	岩出	橋本	海南	湯浅	御坊	田辺	新宮	串本支 所	奈良県	大阪府	その他
4月	1			1									
5月	5			2	1		1	1					
6月	5					2	2	1					
7月	8	2	1		1	2	1	1					
8月	2						1	1					
9月	1			1									
10月	2					2							
11月	0												
12月	3	2						1					
1月	2					2							
2月	1			1									
3月	0												
合計	30	4	1	5	2	8	5	5	0	0	0	0	0

(ウ) 発生事故別集計表 (保健所管内別)

水質事 故内容	全件数	和歌山市	岩出	橋本	海南	湯浅	御坊	田辺	新宮	串本支 所	奈良県	大阪府	その他
魚へい死	7					2	3	2					
油流出	13	4			1	3	2	3					
汚泥流出	0												
濁水・色水・排水	4				1	3							
農薬	0												
その他	6		1	5									
合計	30	4	1	5	2	8	5	5	0	0	0	0	0

3 土壤環境関係

3-1 土壌の汚染に係る環境基準一覧

項目	環境上の条件
カドミウム	検液 1 L につき 0.003mg 以下であり、かつ、農用地においては、米 1 kg につき 0.4 mg以下であること。
全 シ ア ン	検液中に検出されないこと。
有機燐(りん)	検液中に検出されないこと。
鉛	検液 1 L につき 0.01mg 以下であること。
六 価 ク ロ ム	検液 1 L につき 0.05mg 以下であること。
砒 (ひ) 素	検液 1 L につき 0.01mg 以下であり、かつ、農用地(田に限る。)においては、土壌 1 kg につき 15mg 未満であること。
総 水 銀	検液 1 L につき 0.0005mg 以下であること。
アルキル水銀	検液中に検出されないこと。
P C B	検液中に検出されないこと。
銅	農用地(田に限る。)において、土壌1kg につき 125mg 未満であること。
ジクロロメタン	検液 1 L につき 0.02mg 以下であること。
四 塩 化 炭 素	検液 1 L につき 0.002mg 以下であること。
ク ロ ロ エ チ レ ン (別名塩化ビニル又は塩化ビニルモ ノマー)	検液 1 L につき 0.002mg 以下であること。
1,2-ジクロロエタン	検液 1 L につき 0.004mg 以下であること。
1,1-ジクロロエチレン	検液 1 L につき 0.1mg 以下であること。
1,2-ジクロロエチレン	検液 1 L につき 0.04mg 以下であること。
1, 1, 1-トリクロロエタン	検液1Lにつき1mg以下であること。
1, 1, 2-トリクロロエタン	検液 1 L につき 0.006mg 以下であること。
トリクロロエチレン	検液 1 L につき 0.01mg 以下であること。
テトラクロロエチレン	検液 1 L につき 0.01mg 以下であること。
1,3-ジクロロプロペン	検液 1 L につき 0.002mg 以下であること。
チ ウ ラ ム	検液 1 L につき 0.006mg 以下であること。
シマジン	検液 1 L につき 0.003mg 以下であること。
チオベンカルブ	検液 1 L につき 0.02mg 以下であること。
ベンゼン	検液 1 L につき 0.01mg 以下であること。
セレン	検液 1 L につき 0.01mg 以下であること。
ふっ素	検液 1 L につき 0.8mg 以下であること。
ほ う 素	検液 1 L につき 1 mg 以下であること。
1 , 4 - ジオキサン	検液 1 L につき 0.05mg 以下であること。

- [備考] 1 環境上の条件のうち検液中濃度に係るものにあっては付表に定める方法により検液を作成し、これを用いて測定を行う ものとする。
 - 2 カドミウム、鉛、六価クロム、砒 (ひ)素、総水銀、セレン、ふっ素及びほう素に係る環境上の条件のうち検液中濃度に係る値にあっては、汚染土壌が地下水面から離れており、かつ、原状において当該地下水中のこれらの物質の濃度がそれぞれ地下水 1 L につき 0.003 mg、0.01 mg、0.05 mg、0.01 mg、0.0005 mg、0.01 mg、0.000 mg 0.000 mg、0.000 mg 0.000 mg 0.00
 - 3 「検液中に検出されないこと」とは、測定方法の欄に掲げる方法により測定した場合において、その結果が当該方法の 定量限界を下回ることをいう。
 - 4 有機燐(りん)とは、パラチオン、メチルパラチオン、メチルジメトン及びEPNをいう。
 - 5 1, 2 ジクロロエチレンの濃度は、日本工業規格K0125 の 5.1、5.2 又は 5.3.2 より測定されたシス体の濃度と日本工業規格K0125 の 5.1、5.2 又は 5.3.1 により測定されたトランス体の濃度の和とする。

4 騒音公害関係

4-1 騒音に係る環境基準一覧

① 一般地域(道路に面する地域以外の地域)の基準

かれる新田	基图	準 値			
地域の類型	昼間(6時 ~ 22時)	夜間 (22 時 ~ 6 時)			
AA	50 デシベル以下	40 デシベル以下			
A及びB	55 デシベル以下	45 デシベル以下			
С	60 デシベル以下	50 デシベル以下			

- 注1 AAを当てはめる地域は、療養施設、社会福祉施設等が集合して設置される地域など特に静穏を要する地域とする。
 - 2 Aを当てはめる地域は、専ら住居の用に供される地域とする。
 - 3 Bを当てはめる地域は、主として住居の用に供される地域とする。
 - 4 Cを当てはめる地域は、相当数の住居と併せて商業、工業等の用に供される地域とする。

② 騒音に係る環境基準についての地域の類型指定

県が類型指定を行っている地域はない。

なお、市の区域内の地域については、各市が類型指定を行うこととされている。

③ 道路に面する地域の基準

地域の区分	基 2	進 値	
地域の区分	昼間	夜 間	
A地域のうち2車線以上の車線を有する道路に面する 地域	60 デシベル以下	55 デシベル以下	
B地域のうち2車線以上の車線を有する道路に面する地域及びC地域のうち車線を有する道路に面する地域	らら テベノベ ルノコート	60 デシベル以下	

注 車線とは、1 縦列の自動車が安全かつ円滑に走行するために必要な一定の幅員を有する帯状の車道部 分をいう。

④ 幹線交通を担う道路に近接する空間における特例基準

基準	準 値
昼間	夜 間
70 デシベル以下	65 デシベル以下

[備考]

個別の住居等において騒音の影響を受けやすい面の窓を主として閉めた生活が営まれていると認められるときは、屋内へ透過する騒音に係る基準(昼間にあっては45デシベル以下、夜間にあっては40デシベル以下)によることができる。

4-2 自動車騒音に係る要請限度一覧(騒音規制法)

① 自動車騒音に係る要請限度一覧

	基準	進 値
区域の区分	昼間 (6時 ~ 22	夜間 (22時 ~ 6
	時)	時)
a 区域及び b 区域のうち一車線を有する道路	65 デシベル	55 デシベル
に面する区域	00 / 🗸 🗸	55 / V· //V
a 区域のうち二車線以上の車線を有する道路	70 デシベル	65 デシベル
に面する区域	10 / 5//	00 / 2 · 1/2
b 区域のうち二車線以上の車線を有する道路		
に面する区域及び c 区域のうち車線を有する	75 デシベル	70 デシベル
道路に面する区域		

- 注1 a 区域 専ら住居の用に供される区域
 - 2 b区域 主として住居の用に供される区域
 - 3 c 区域 相当数の住居と併せて商業、工業等の用に供される区域
 - 4 車線とは、一縦列の自動車が安全かつ円滑に走行するために必要な幅員を有する帯状の車道の部分をいう。

② 幹線交通を担う道路に近接する区域に係る限度の特例基準

基注	準 値
昼間(6時~22時)	夜間 (22 時 ~ 6 時)
75 デシベル	70 デシベル

- 注1 幹線交通を担う道路とは、高速自動車国道、一般国道、都道府県道及び4車線以上の車線を有する 市町村道とする。
 - 2 幹線交通を担う道路に近接する区域とは、2 車線以下の車線を有する道路の場合は道路の敷地の境 界線から 15 m、2 車線を超える場合は、同境界線から 20 m までの範囲とする。

③ 自動車騒音に係る要請限度の地域の類型指定(県指定分)

対象	区域の区分						
刈家	a 区域	b 区域	c 区域				
各町村	第一種低層住居専用地域 第二種低層住居専用地域 第一種中高層住居専用地域 第二種中高層住居専用地域	第一種住居地域 第二種住居地域 準住居地域 用途地域の定めのない地域	近隣商業地域 商業地域 準工業地域 工業地域				

注 市の区域内の地域については、各市が区域指定を行うこととされている。

4-3 航空機騒音に係る環境基準一覧

① 航空機騒音に係る環境基準一覧

地域の類型	基 準 値
I	L _{den} 57 デシベル以下
П	L _{den} 62 デシベル以下

注 I をあてはめる地域は専ら住居の用に供される地域とし、II をあてはめる地域はI 以外の地域であって通常の生活を保全する必要がある地域とする。

② 航空機騒音に係る環境基準の地域の類型指定

平成26年10月に、南紀白浜空港周辺について、類型指定を行った。

なお、環境基準の各類型を当てはめる地域については、都道府県知事が指定を行うこととされている。

4-4 騒音に係る環境基準達成状況またはその推定

① 和歌山市、海南市の一般地域における騒音に係る環境基準達成状況

	昼夜間と	とも達成	昼夜間のいて	ずれかが達成 しょうしょう	昼夜間と	こも超過	地点数
	地点数	達成率(%)	地点数	達成率(%)	地点数	超過率(%)	合 計
和歌山市	7	100.0	0	0.0	0	0.0	7
海南市	3	100.0	0	0.0	0	0.0	3

② 和歌山市の道路に面する地域における騒音に係る環境基準達成状況の推定

					戸数			環均	竟基準達成	率
番号	測 定 地 点	道路名	対象 住居等	昼間・ 夜間共 達成	昼間 のみ 達成	夜間 のみ 達成	昼間・ 夜間共 超過	昼間・ 夜間共 達成	昼間 達成	夜間 達成
			(戸)	(戸)	(戸)	(戸)	(戸)	(%)	(%)	(%)
1		阪和自動車道	689	689	0	0	0		100.0	100.0
	和歌山市北 和歌山市元町丁南ノ丁 和歌山市一番丁 和歌山市西布経丁1丁目	国道24号	2,424	2,398	0	1	25	98.9	98.9	99.0
1 '7	和歌山市小人町 和歌山市向	県道和歌山阪南線	1061	1026	0	18	17	96.7	96.7	98.4
4	和歌山市北島	県道和歌山港北島線	702	702	0	0	0	100.0	100.0	100.0
	和歌山市粟	国道26号	395	395	0	0	0	100.0	100.0	100.0
6	和歌山市紀三井寺 和歌山市西高松一丁目 和歌山市和歌浦西一丁目	国道42 号	2,761	2,696	0	41	24	97.6	97.6	99.1
	和歌山市平井 和歌山市松江北2丁目 和歌山市善明寺	県道粉河加太線	4,073	4,025	0	21	27	98.8	98.8	99.3
8	和歌山市井ノロ	県道岩出海南線	162	162	0	0	0	100.0	100.0	100.0
9	和歌山市森小手穂 和歌山市新中島 和歌山市堀止東1丁目6	県道和歌山橋本線	1,925	1,923	0	2	0	99.9	99.9	100.0
	和歌山市小倉	県道和歌山打田線	361	333	0	14	14	92.2	92.2	96.1
11	和歌山市今福5丁目 和歌山市福島	県道新和歌浦梅原線	2626	2619	0	0	7	99.7	99.7	99.7
	和歌山市築港6丁目	県道和歌山港線	490	485	0	0	5	99.0	99.0	99.0
	和歌山市美園町	県道和歌山停車場線	685	685	0	0	0	100.0	100.0	100.0
14		県道和歌山貝塚線	157	157	0	0	0	100.0	100.0	100.0
15		県道岬加太港線	154	154	0	0	0	100.0	100.0	100.0
16	7-75-1-4 **	県道小豆島岩出線	24	24	0	0	0	100.0	100.0	100.0
	和歌山市三葛	県道和歌山海南線	1,813	1,810	0	0	3	99.8	99.8	99.8
	和歌山市神崎	県道秋月海南線	349	349	0	0	0	100.0	100.0	100.0
19		県道三田海南線	274	274	0	0	0	100.0	100.0	100.0
20	和歌山市秋月和歌山市一番丁	県道和歌山野上線	1,938	1,931	0	3	4		99.6	99.8
	和歌山市福島	県道善明寺北島線	349	349	0	0	0	100.0	100.0	100.0
23	和歌山市有本	県道有功天王線 県道三田三葛線	311 97	311 97	0	0	0	100.0 100.0	100.0 100.0	100.0 100.0
-	 和歌山市岩橋	県道井ノ口秋月線	622	621	0	1	0	99.8	99.8	100.0
	和歌山市岩橋	県道岩橋栗栖線	176	176	0	0	0	100.0	100.0	100.0
	和歌山市太田4丁目	<u>宗旦石侗未阳椒</u> 県道鳴神木広線	567	560	0	7	0	98.8	98.8	100.0
27	和歌田市太田工工日	県道西脇梅原線	877	877	0	0	0	100.0	100.0	100.0
28		県道紀伊停車場田井ノ 瀬線	96		0				100.0	100.0
29	和歌山市市小路	県道紀ノ川停車場平井 線	227	227	0	0	0	100.0	100.0	100.0
	和歌山市和歌浦中3丁目	県道新和歌浦線	788	788	0	0	0	100.0	100.0	100.0
	和歌山市市小路	県道紀ノ川停車場線	295	295	0	0	0	100.0	100.0	100.0
	和歌山市新大工町	県道紀和停車場線	583	583	0	0	0	100.0	100.0	100.0
33		県道沖野々森小手穂線	130	130	0	0	0	100.0	100.0	100.0
	和歌山市黒田一丁目	市道有本中島線	846	839	0	7	0	99.2	99.2	100.0
	和歌山市雄松町5丁目	市道大橋島崎町線	579	579	0	0	0		100.0	100.0
	和歌山市岡山町 和歌山市手平1丁目	市道本町和歌浦線市道新和歌浦中之島紀	2,155 1,678	2,155 1,678	0	0	0	100.0	100.0 100.0	100.0 100.0
20	和歌山市中之島	三井寺線 市道六十谷手平線	444	44	0	0	0	0.0	9.9	9.9
_	<u>和歌山巾中と島</u> 和歌山市北桶屋町	市道市駅小倉線	1180	1180	0	0	0	9.9	100.0	100.0
	和歌山市北州産町 和歌山市榎原	市道西脇山口線	1021	1021	0	0	0		100.0	100.0
	和歌山巾復原 和歌山市手平1丁目	市道砂山手平線	1372	1372	0	0	0	100.0	100.0	100.0
41	<u>和歌叫巾ナギ!」日</u> 合		37,456	36,815	0	115	126	98.3	98.3	98.6
Щ		!	37,430	30,013		113	120	90.3	90.3	შ0.0

⁽注) 一部の路線は、自動車の交通量及び制限速度により推計した。

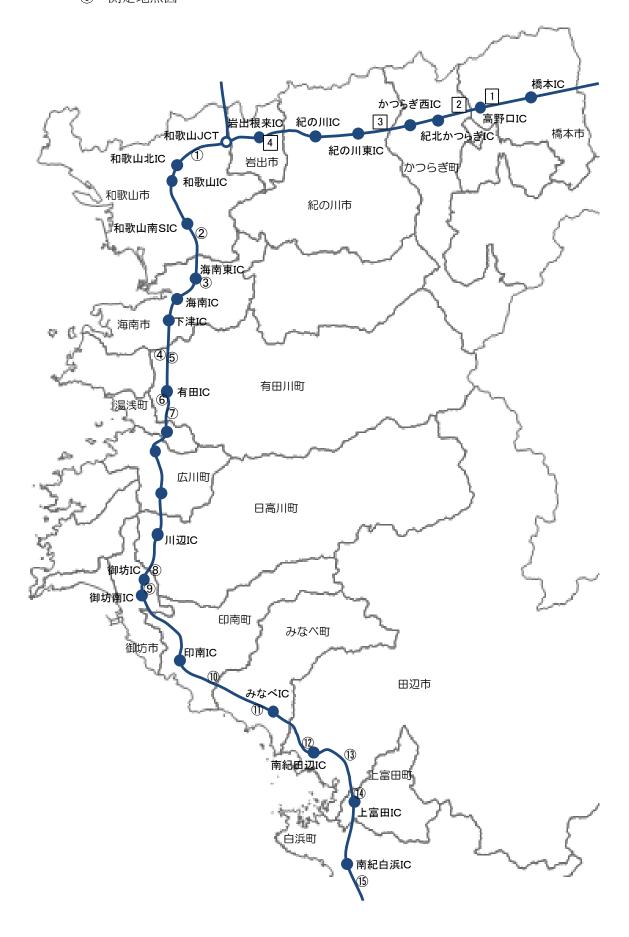
⁽注) 合計は各路線の交差点付近の建物を重複して算出している。

③ 海南市の道路に面する地域における騒音に係る環境基準達成状況の推定

					戸数			環境	竟基準達成	李
番号	測 定 地 点	道路名	対象 住居等 (戸)	昼間・ 夜間共 達成 (戸)	昼間 のみ 達成 (戸)	夜間 のみ 達成 (戸)	昼間・ 夜間共 超過 (戸)	昼間・ 夜間共 達成 (%)	昼間 達成 (%)	夜間 達成 (%)
1	海南市大野中	阪和自動車道	190	190	0	0	0	100. 0	100.0	100.0
2	海南市大野中	国道370号線	1,050	928	0	92	30	88. 4	88.4	97. 1
3	海南市重根	県道和歌山海南線	186	186	0	0	0	100.0	100.0	100.0
4	海南市阪井	県道沖野々森小手穂線	131	130	0	1	0	99. 2	99.2	100.0
5	海南市船尾	国道42号線	681	668	0	13	0	98. 1	98.1	100.0
6	海南市原野	国道424号線	318	317	0	1	0	99. 7	99.7	100.0
7	海南市重根	県道海南金屋線	483	483	0	0	0	100.0	100.0	100.0
8	海南市岡田	県道三田海南線	201	201	0	0	0	100.0	100.0	100.0
	合	計	3, 240	3, 103	0	107	30	95. 8	95.8	99. 1

④ 田辺市の道路に面する地域における騒音に係る環境基準達成状況の推定

					戸数			環境	竟基準達成	[率
番号	測定地点	道路名	対象 住居等	昼間・ 夜間共 達成	昼間 のみ 達成	夜間 のみ 達成	昼間・ 夜間共 超過	昼間・ 夜間共 達成	昼間 達成	夜間 達成
			(戸)	(戸)	(戸)	(戸)	(戸)	(%)	(%)	(%)
1	田辺市芳養町	阪和自動車道	34	34	0	0	0	100.0	100.0	100.0
2	田辺市稲成町	版和自動車道 で記載車道	150	150	0	0	0	100.0	100.0	100.0
3	田辺市新庄町	一般国道42号	4	4	0	0	0	100.0	100.0	100.0
4	田辺市新庄町	一般国道42号	18	18	0	0	0	100.0	100.0	100.0
5	田辺市新庄町				0					
<u> </u>		一般国道42号	15	15		0	0	100.0	100.0	100.0
6	田辺市新庄町	一般国道42号	13	13	0	0	0	100.0	100.0	100.0
7	田辺市新庄町	一般国道42号	27	27	0	0	0	100.0	100.0	100.0
8	田辺市新庄町	一般国道42号	52	52	0	0	0	100.0	100.0	100.0
9	田辺市中万呂	一般国道42号	113	113	0	0	0	100.0	100.0	100.0
10	田辺市下万呂	一般国道42号	50	50	0	0	0	100.0	100.0	100.0
11	田辺市稲成町	一般国道42号	41	41	0	0	0	100.0	100.0	100.0
12	田辺市稲成町	一般国道42号	118	118	0	0	0	100.0	100.0	100.0
13	田辺市明洋1丁目19	一般国道42号	265	265	0	0	0	100.0	100.0	100.0
14	田辺市芳養町	一般国道42号	63	63	0	0	0	100.0	100.0	100.0
15	田辺市稲成町	一般国道42号	5	5	0	0	0	100.0	100.0	100.0
16	田辺市あけぼの4	一般国道424号	61	61	0	0	0	100.0	100.0	100.0
17	田辺市高雄2丁目13	一般国道424号	174	174	0	0	0	100.0	100.0	100.0
18	田辺市湊	田辺龍神線	270	270	0	0	0	100.0	100.0	100.0
19	田辺市高雄1丁目24	田辺龍神線	129	129	0	0	0	100.0	100.0	100.0
20	田辺市高雄2丁目35	田辺龍神線	85	85	0	0	0	100.0	100.0	100.0
21	田辺市秋津町	田辺龍神線	95	95	0	0	0	100.0	100.0	100.0
22	田辺市湊	田辺白浜線	368	365	0	3	0	99.2	99.2	100.0
23	田辺市湊	紀伊田辺停車場線	54	54	0	0	0	100.0	100.0	100.0
24	田辺市新庄町	南紀白浜空港線	205	197	0	8	0	96.1	96.1	100.0
25	田辺市下三栖	上富田南部線	53	53	0	0	0	100.0	100.0	100.0
26	田辺市下三栖	上富田南部線	86	86	0	0	0	100.0	100.0	100.0
27	田辺市上万呂 田辺市下万呂	上富田南部線 上富田南部線	108 145	108 145	0	0	0	100.0 100.0	100.0 100.0	100.0 100.0
28	田辺市文里1丁目6	文里湊線	56	56	0	0	0	100.0	100.0	100.0
30	田辺市文里2丁目38	文里湊線	345	345	0	0	0	100.0	100.0	100.0
31	田辺市新屋敷町	文里湊線	190	190	0	0	0	100.0	100.0	100.0
32	田辺市上万呂	上万呂北新町線	229	229	0	0	0	100.0	100.0	100.0
33	田辺市下万呂	上万呂北新町線	163	163	0	0	0	100.0	100.0	100.0
34	田辺市稲成町	秋津川田辺線	147	147	0	0	0	100.0	100.0	100.0
35	田辺市稲成町	秋津川田辺線	73	73	0	0	0	100.0	100.0	100.0
36	田辺市上屋敷2丁目15	田辺港線	108	108	0	0	0	100.0	100.0	100.0
37	田辺市上屋敷1丁目10	田辺港線	382	382	0	0	0	100.0	100.0	100.0
38	田辺市文里1丁目8	文里港線	47	47	0	0	0	100.0	100.0	100.0
39	田辺市新庄町	温川田辺線	81	81	0	0	0	100.0	100.0	100.0
40	田辺市上屋敷3丁目7 合	市道外環状線 +	52	52	0	0	0	100.0	100.0	100.0
Ь	合 i	I	4,674	4,663	0	11	0	99.8	99.8	100.0


⑤ 新宮市の道路に面する地域における騒音に係る環境基準達成状況の推定

					戸数			環境	竟基準達成	率
番号	測 定 地 点	道路名	対象 住居等	昼間・ 夜間共 達成	昼間 のみ 達成	夜間 のみ 達成	昼間• 夜間共 超過	昼間・ 夜間共 達成	昼間 達成	夜間 達成
			(戸)	(戸)	(戸)	(戸)	(戸)	(%)	(%)	(%)
1	新宮市千穂3丁目7	一般国道42号	517	516	1			99.8	100.0	99.8
2	新宮市佐野	一般国道42号	245	245				100.0	100.0	100.0
3	新宮市木ノ川	一般国道42号(バイパス)	2	2				100.0	100.0	100.0
4	新宮市磐盾1	一般国道168号	244	244				100.0	100.0	100.0
5	1	一般国道169号	35	35				100.0	100.0	100.0
6	新宮市下本町	新宮停車場線	132	132				100.0	100.0	100.0
7	1	那智勝浦熊野川線	116	116				100.0	100.0	100.0
8		高田相賀線	18	18				100.0	100.0	100.0
9	新宮市王子町3丁目13	県道あけぼの広角線	188	188				100.0	100.0	100.0
10	新宮市新宮	県道あけぼの広角線	55	54		1		98.2	98.2	100.0
11	新宮市徐福1丁目7	池田港線	359	359				100.0	100.0	100.0
12	新宮市三輪崎1丁目1	三輪崎港線	188	188				100.0	100.0	100.0
	合 計	t	2,099	2,097	1	1	0	99.9	100.0	100.0

⑥ 町村の区域の道路に面する地域における騒音に係る環境基準達成状況の推定(和歌山県測定分)

					戸数			環均	竟基準達成	率
番号	測 定 地 点	道路名	対象住居等	昼間・ 夜間共 達成	昼間のみ産成	夜間 のみ 達成	昼間・ 夜間共 超過	昼間・ 夜間共 達成	昼間達成	夜間達成
			(戸)	(戸)	(戸)	(戸)	(戸)	(%)	(%)	(%)
1	かつらぎ町中飯降	一般国道24号	151	151				100.0	100.0	100.0
2	かつらぎ町丁ノ町	一般国道24号	202	162	40			80. 2	100.0	80. 2
3	上富田町岡	上富田南部線	361	361				100.0	100.0	100.0
4	有田郡有田川町大字野田	一般国道42号	102	93		9		91. 2	91. 2	100.0
5	有田郡有田川町大字下津 野	吉備金屋線	192	192				100. 0	100.0	100.0
6	日高郡日高町萩原	一般国道42号	130	121		9		93. 1	93. 1	100.0
7	日高郡日高川町和佐	玄子和佐線	116	116				100.0	100.0	100.0
8	西牟婁郡白浜町	田辺白浜線	293	287		5	1	98. 0	98.0	99. 7
9	西牟婁郡白浜町堅田	白浜停車場線	157	157				100.0	100.0	100.0
10	西牟婁郡白浜町才野	白浜温泉線	158	158				100.0	100.0	100.0
11	湯浅町大字別所	一般国道42号	155	155		0		100.0	100.0	100.0
12	広川町大字広	一般国道42号	76	76		0		100.0	100.0	100.0
13	日高郡みなべ町埴田	一般国道42号	292	291		1		99. 7	99.7	100.0
	合	計	2, 385	2, 320	40	24	1	97. 3	99.0	98. 3

4-5 阪和自動車道、湯浅御坊道路及び紀勢自動車道並びに京奈和自動車道騒音測定 ① 測定地点図

② 基準時間帯ごとにおける等価騒音レベル測定結果

ア 阪和自動車道、湯浅御坊道路及び紀勢自動車道の騒音測定結果

測定点 No.	測定地点	L _{Aeq} (db) 測定日	昼間	夜間
1	和歌山市 府中	令和6年5月17日(金)	57.2	52.4
2	和歌山市 境原	令和6年5月17日(金)	53.5	48.2
3	海南市 大野中	令和6年5月30日(木)	61.4	59.2
4	有田川町 田口	令和6年6月4日(火)	61.7	54. 1
5	有田川町 小島	令和6年6月4日(火)	62.0	55. 5
6	有田川町 天満	令和6年6月4日(火)	62.9	57.9
7	有田川町 水尻	令和6年6月4日(火)	59.6	53.5
8	日高川町 小熊	令和6年5月30日(木)	63.3	59.2
9	御坊市 熊野	令和6年5月30日(木)	62. 1	59.5
10	印南町 西ノ地	令和6年6月4日(火)	59.9	52.7
11	みなべ町 徳蔵	令和6年6月4日(火)	63.2	54.6
12	田辺市 中芳養	令和6年6月4日(火)	54.3	58.8
13	田辺市 中万呂	令和6年6月4日(火)	63. 1	57.2
14	上富田町 朝来	令和6年5月30日(木)	57.9	53.2
15	白浜町 富田	令和6年5月30日(木)	63.2	59.2

イ 京奈和自動車道の騒音測定結果

測定点 No.	測定地点	L _{Aeq} (db) 測定日	昼間	夜間
1	橋本市高野口町	令和6年5月30日(木)	69.7	66. 1
2	かつらぎ町 中飯降	令和6年5月30日(木)	64.8	61.9
3	紀の川市 切畑	令和6年5月30日(木)	59.2	56.6
4	岩出市 根来	令和6年5月30日(木)	69.0	66. 1

- (注1) 昼間とは6時から22時まで、夜間は22時から翌朝6時までを指す。
- (注2) 昼間、夜間とも2回分の L_{Aeq} のエネルギー平均値である。
- (注3) 幹線交通を担う道路としての特例基準は、昼間70デシベル以下、夜間65デシベル以下 (環境基準については、和歌山市及び海南市が地域の類型指定を行っている)
- (注4) 幹線交通を担う道路としての要請限度の特例基準は、昼間 75 デシベル以下、夜間 70 デシベル以下

③ 自動車道路の騒音測定結果

ア 阪和自動車道、湯浅御坊道路及び紀勢自動車道の騒音測定等結果一覧

测点上		騒音結果	昼	! 間 (7	:00~9:00	0)	昼	間 (17	:00~19:0	00)	夜	7間 (4	:00~6:00))	夜間	[] (22	:00~24:0	00)
測定点 No.	測定地点		騒音	音レベル(db)	交通量	騒	音レベル (c	lb)	交通量	騒音	音レベル(db)	交通量	騒音	テレベル(d	lb)	交通量
110.		測定日	L_{Aea}	L_{A50}	L _{Amax}	(台/10分)	L_{Aea}	L_{A50}	L _{Amax}	(台/10分)	L_{Aea}	L_{A50}	L _{Amax}	(台/10分)	L_{Aeq}	L_{A50}	L_{Amax}	(台/10分)
1	和歌山市 府中	令和6年5月17日(金)	57.7	57.3	65.6	457	56.7	56.3	65. 2	362	52.9	49.8	64. 2	180	51.8	47.1	63.7	68
2	和歌山市 境原	令和6年5月17日(金)	53.7	53.0	62.3	204	53.3	52.6	60.6	318	48.5	46.8	60.3	48	47.8	45.6	57.8	91
3	海南市 大野中	令和6年5月30日(木)	61.0	58.8	76. 5	343	61.8	59.8	78.3	306	57. 2	48.7	75. 2	38	60.5	52.9	84.5	49
4	有田川町 田口	令和6年6月4日(火)	61.8	61.4	74.6	499	61.5	61.0	67.1	433	54.0	51.7	64. 5	55	54. 2	52.4	65.0	78
5	有田川町 小島	令和6年6月4日(火)	62. 2	60.1	71.8	479	61.8	59.6	72.6	452	55. 4	48.4	74.4	66	55. 5	46.7	71.4	76
6	有田川町 天満	令和6年6月4日(火)	62.5	61.3	74. 1	261	63.3	60.9	76.9	258	58.4	52.9	73.6	47	57.3	48.7	75.9	36
7	有田川町 水尻	令和6年6月4日(火)	58. 9	54.7	76. 3	197	60.2	52. 9	74.3	188	54.8	51.3	74. 3	42	51.6	43.5	69.7	38
8	日高川町 小熊	令和6年5月30日(木)	64. 9	59.4	80.2	173	60.7	56. 1	78.7	165	59. 6	44.7	76. 1	29	58.8	51.5	81.3	42
9	御坊市 熊野	令和6年5月30日(木)	61.0	55.5	76.3	146	63.0	56.9	81.1	164	57.7	43.1	81.0	16	60.7	53.4	79.0	43
10	印南町 西ノ地	令和6年6月4日(火)	59.8	55.4	73. 1	144	59.9	55. 5	85.5	115	53.3	38. 1	69. 5	43	51.9	43.9	68.9	28
11	みなべ町 徳蔵	令和6年6月4日(火)	62.9	56.1	79.3	135	63.5	57. 1	79.2	140	54. 1	42.7	75.4	35	55.0	43.6	72.0	31
12	田辺市 中芳養	令和6年6月4日(火)	53. 9	51.0	63.1	113	54.6	52. 9	61.5	112	61.5	45.1	81.2	25	50.7	48.4	59. 9	25
13	田辺市 中万呂	令和6年6月4日(火)	63. 1	57.1	79.8	126	63.1	55. 5	77.0	119	58. 1	43.0	76.6	25	56.0	39.3	74. 9	19
14	上富田町 朝来	令和6年5月30日(木)	57.7	54.0	70.8	101	58.1	54. 9	72.3	118	55.0	41.9	73. 2	25	50.0	32.6	67.6	15
15	白浜町 富田	令和6年5月30日(木)	63.8	60.1	79. 2	119	62.4	60.0	72.8	130	61.2	43.7	77.4	21	55.3	43	69. 2	20

(注1) 調査機関:和歌山県、和歌山市、海南市、御坊市、田辺市、有田川町、印南町、日高川町、みなべ町、上富田町、白浜町が合同で実施した。

イ 京奈和自動車道の騒音測定等結果一覧

3町45年		騒音結果	亙	と間 (7)	00~9:00))	昼間	間 (17	:00~19:0	00)	夜	間 (4	:00~6:00))	夜	間 (22	:00~24:0	00)
測定点 No.	測定地点		騒音	音レベル(d	lb)	交通量	騒音	旨レベル(db)	交通量	騒音	テレベル(d	db)	交通量	騒音	音レベル(d	db)	交通量
110.		測定日	L_{Aea}	L_{A50}	L_{Amax}	(台/10分)	L_{Aea}	L_{A50}	L_{Amax}	(台/10分)	L_{Aeq}	L_{A50}	L_{Amax}	(台/10分)	L_{Aea}	L_{A50}	L_{Amax}	(台/10分)
1	橋本市高野口町	令和6年5月30日(木)	70.0	66.3	85. 9	280	69.3	65. 2	85.6	240	66. 9	58. 2	82.2	57	65. 2	59. 1	86.2	73
2	かつらぎ町 中飯園	令和6年5月30日(木)	65.3	64.1	74.6	404	64.3	63.0	74.0	355	63. 5	54. 1	76. 4	86	59. 2	47. 1	73.4	41
3	紀の川市 切畑	令和6年5月30日(木)	58. 9	58. 1	70.3	386	59.5	58. 1	68.6	253	57.0	51.2	72.4	72	56. 2	50.2	70.1	48
4	岩出市 根来	令和6年5月30日(木)	69. 2	66. 5	80.6	244	68.7	67.3	78.6	271	65. 7	51.6	81.8	58	66. 4	54.4	80.1	75

(注1) 調査機関:和歌山県、岩出市、紀の川市、橋本市、かつらぎ町が合同で実施した。

④ 各自動車道の交通量内訳

ア 阪和自動車道、湯浅御坊道路及び紀勢自動車道の交通量内訳一覧

測定点	測定地点	台/10分	昼	間 (7	:00~9:00)	昼	間 (17	:00~19:0	00)	夜	7間 (4	:00~6:00)	夜	間 (22	:00~24:0	00)
No.	例足地点	測定日	大型車	普通車	二輪車	合 計	大型車	普通車	二輪車	合 計	大型車	普通車	二輪車	合 計	大型車	普通車	二輪車	合 計
1	和歌山市 府中	令和6年5月17日(金)	80	375	2	457	44	312	6	362	64	116	0	180	12	56	0	68
2	和歌山市 境原	令和6年5月17日(金)	78	126	0	204	34	284	0	318	24	24	0	48	8	83	0	91
3	海南市 大野中	令和6年5月30日(木)	53	290	0	343	29	277	0	306	24	14	0	38	9	40	0	49
4	有田川町 田口	令和6年6月4日(火)	37	461	1	499	10	420	3	433	22	33	0	55	4	74	0	78
5	有田川町 小島	令和6年6月4日(火)	40	434	5	479	21	429	2	452	22	44	0	66	11	65	0	76
6	有田川町 天満	令和6年6月4日(火)	17	243	1	261	12	242	4	258	17	30	0	47	4	32	0	36
7	有田川町 水尻	令和6年6月4日(火)	30	166	1	197	15	171	2	188	11	30	1	42	4	34	0	38
8	日高川町 小熊	令和6年5月30日(木)	21	152	0	173	18	146	1	165	18	11	0	29	3	39	0	42
9	御坊市 熊野	令和6年5月30日(木)	27	119	0	146	13	150	1	164	9	7	0	16	7	36	0	43
10	印南町 西ノ地	令和6年6月4日(火)	32	111	1	144	16	98	1	115	18	25	0	43	3	25	0	28
11	みなべ町 徳蔵	令和6年6月4日(火)	13	121	1	135	10	128	2	140	7	28	0	35	3	27	1	31
12	田辺市 中芳養	令和6年6月4日(火)	22	90	1	113	7	105	0	112	9	16	0	25	4	21	0	25
13	田辺市 中万呂	令和6年6月4日(火)	14	112	0	126	13	106	0	119	3	23	0	25	1	17	1	19
14	上富田町 朝来	令和6年5月30日(木)	3	98	0	101	9	108	1	118	8	17	0	25	2	13	0	15
15	白浜町 富田	令和6年5月30日(木)	75	43	1	119	9	120	1	130	13	8	0	21	1	19	0	20

(参考) 自動車走行台数

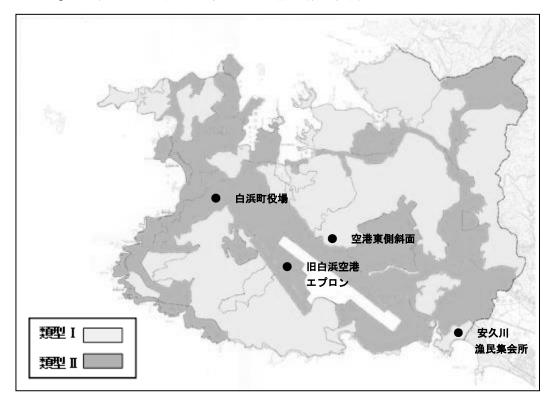
(阪和自動車道区間(和歌山市~田辺市): 西日本高速道路株式会社 関西支社 和歌山管理事務所調べ)

(紀勢自動車道区間(田辺市~すさみ町): 国土交通省 近畿地方整備局 紀南河川国道事務所調べ)

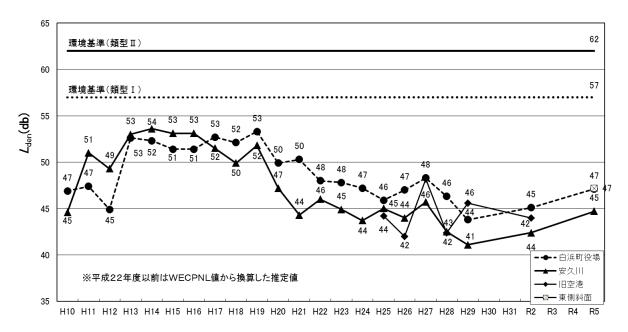
算出期日 区間	令和6年 5月17日(金)	令和6年 5月30日(木)	令和6年 6月4日(火)	令和6年 5月平均	令和6年 6月平均	R5年度 平均	測定点No.
和歌山JCT ~ 和歌山北IC	38, 191	36, 708	35, 366	39, 774	38, 672	40, 292	1
和歌山南SIC ~ 海南東IC	30, 900	28, 546	27, 164	32, 034	30, 716	31, 792	2
海南東IC ~ 海南IC	27, 422	25, 166	23, 878	28, 508	27, 310	28, 274	3
下津IC ~ 有田IC	34, 203	31, 693	29, 585	34, 961	33, 930	34, 816	4, 5
有田IC ~ 有田南IC	19, 977	17, 266	16, 441	20, 835	19, 974	20, 430	6
有田南IC ~ 湯浅IC	22, 929	19, 340	19, 108	23, 380	22, 697	23, 043	7
川辺IC ~ 御坊IC	18, 209	15, 655	15, 081	18, 688	17, 855	18, 589	8
御坊南IC ~ 印南IC	15, 883	13, 408	13, 126	16, 427	15, 741	16, 490	9
印南IC ~ みなべIC	14, 839	12, 468	12, 037	14, 836	14, 610	15, 181	10, 11
みなべIC ~ 南紀田辺IC	13, 498	11, 229	10, 786	13, 688	13, 192	13, 863	12
南紀田辺IC ~ 上富田IC		8, 793	8, 476	10, 036	9, 470	9, 925	13
上富田IC ~ 南紀白浜IC		10, 740	10, 504	11, 562	10, 724	11, 362	14
南紀白浜IC ~ 日置川IC		10, 277	10, 222	10, 736	10, 124	10, 542	15

イ 京奈和自動車道の交通量内訳一覧

測定点	測定地点		台/10分	昼	·間 (7	:00~9:00))	昼	間 (17	:00~19:0	00)	夜	7間 (4	:00~6:00)	夜	間 (22	:00~24:0	00)
No.	例足地点	測定日		大型車	普通車	二輪車	合 計	大型車	普通車	二輪車	合 計	大型車	普通車	二輪車	合 計	大型車	普通車	二輪車	合 計
1	橋本市高野口町	令和6年5	月30日(木)	47	229	4	280	24	213	3	240	25	32	0	57	15	58	0	73
2	かつらぎ町 中飯降	令和6年5	月30日(木)	33	369	2	404	19	333	3	355	28	58	0	86	11	30	0	41
3	紀の川市 切畑	令和6年5	月30日(木)	62	323	1	386	25	228	0	253	23	48	1	72	9	39	0	48
4	岩出市 根来	令和6年5	月30日(木)	40	203	1	244	23	246	2	271	20	38	0	58	72	3	0	75


(参考) 自動車走行台数 単位:台/日 (国土交通省 近畿地方整備局 和歌山河川国道事務所調べ)

	令和5年 5月31日(水)	令和5年 6月5日(月)	令和5年 5月平均	令和5年 6月平均	R4年度平均	測定点 No.
橋本IC ~ 高野口IC	19, 400	23, 630	22, 861	21, 850	22, 707	1
高野口IC ~ 紀北かつらぎIC	欠測	欠測	欠測	欠測	23, 032	2
紀北かつらぎIC ~ かつらぎ西IC	20, 911	23, 316	22, 641	22, 174	22, 590	3
紀の川IC ~ 岩出根来IC	17, 537	19, 465	19, 194	18, 842	19, 034	4


	令和6年 5月30日(木)	令和6年 5月平均	令和6年 6月平均	R5年度 平均	測定点 No.
橋本IC ~ 高野口IC	23, 045	23, 649	22, 944	22, 968	1
高野口IC ~ 紀北かつらぎIC	22, 945	23, 529	22, 825	22, 214	2
紀北かつらぎIC ~ かつらぎ西IC	21, 834	22, 333	21, 626	22, 385	3
紀の川IC ~ 岩出根来IC	17, 586	18, 578	17, 865	18, 969	4

4-6 南紀白浜空港周辺地域における航空機騒音に係る環境基準の達成状況

① 南紀白浜空港周辺地域における航空機騒音測定地点図

② 南紀白浜空港周辺地域における航空機騒音に係る環境基準の達成状況

4-7 騒音に係る規制基準(騒音規制法)

① 騒音規制法第3条第1項に規定する騒音規制地域(県指定分:令和2年4月1日以降)

各町村の全域が規制地域となっている。なお、市の区域内の地域については、各市が規制地域の 指定を行うこととされている。

② 特定工場等において発生する騒音の規制基準 (騒音規制法第4条第1項)

	基準値								
区域の区分	朝 (6時~8時)	昼間 (8時~20時)	夕 (20時~22時)	夜間 (22 時 ~ 翌日 6 時)					
第1種区域	45 デシベル	50 デシベル	45 デシベル	40 デシベル					
第2種区域(I)	50 デシベル	55 デシベル	50 デシベル	45 デシベル					
第2種区域(Ⅱ)	50 デシベル	60 デシベル	50 デシベル	45 デシベル					
第3種区域	60 デシベル	65 デシベル	60 デシベル	55 デシベル					
第4種区域	65 デシベル	70 デシベル	65 デシベル	60 デシベル					

- 注 1 測定点は、原則として工場又は事業場の敷地境界線上とする。
 - 2 第2種区域(I)、第2種区域(II)、第3種区域又は第4種区域内に所在する学校、保育所、病院、診療所のうち患者を入院させるための施設を有するもの、図書館、特別養護老人ホーム、幼保連携型認定こども園の敷地の周囲おおむね50メートル以内の区域における当該基準は、上記の値からそれぞれ5デシベルを減じた値とする。
 - 3 区域の区分の内容は次のとおりとする。
 - 第1種区域 第1種低層住居専用地域及び第2種低層住居専用地域
 - 第2種区域(I) 第1種中高層住居専用地域、第2種中高層住居専用地域、第1種住居地域、 第2種住居地域及び準住居地域並びに用途地域の定めのある町村の地域のう ち、当該用途地域以外の区域
 - 第2種区域(Ⅱ) 用途地域の定めのない町村の全域
 - 第3種区域 近隣商業地域、商業地域及び準工業地域
 - 第4種区域 工業地域及び工業専用地域
 - 4 市の区域内の地域については、各市が規制基準を定めることとされている。

4-8 騒音に係る排出基準(和歌山県公害防止条例施行規則第7条)

4-7②の表(騒音に係る規制基準(騒音規制法))と同様であるが、市の区域を含めて、区域の区分の内容を以下のとおりとして規定している。

第1種区域 第1種低層住居専用地域及び第2種低層住居専用地域

第2種区域(I) 和歌山市、海南市、橋本市、有田市、御坊市、田辺市、新宮市及び用途地域の 定めのある町村の地域のうち第1種中高層住居専用地域、第2種中高層住居 専用地域、第1種住居地域、第2種住居地域、準住居地域及び用途地域以外 の区域

第2種区域(II) 紀の川市及び岩出市の地域のうち第1種中高層住居専用地域、第2種中高層住居専用地域、第1種住居地域、第2種住居地域、準住居地域及び用途地域 以外の区域並びに用途地域の定めのない町村の全域

第3種区域 近隣商業地域、商業地域及び準工業地域

第4種区域 工業地域及び工業専用地域

なお、風力発電施設から発生する騒音にあっては、当該騒音により当該施設周辺の生活環境の保全上支障を生ずるおそれがないと認められる場合は、表に定める基準によらないことができる。

5 振動公害関係

5-1 道路交通振動に係る要請限度

① 道路交通振動に係る要請限度一覧

区域の区分	基準値				
△₩♥ノ△汀	昼間	夜間			
第一種区域	65 デシベル	60 デシベル			
第二種区域	70 デシベル	65 デシベル			

- 注1 第一種区域及び第二種区域とは、それぞれ次の各号に掲げる区域として都道府県知事(市の区域内の区域については、市長。)が定めた区域をいう。
 - (1) 第一種区域 良好な住居の環境を保全するため、特に静穏の保持を必要とする区域及び住居の用に 供されているため、静穏の保持を必要とする区域
 - (2) 第二種区域 住居の用に併せて商業、工業等の用に供されている区域であって、その区域内の住民の生活環境を保全するため、振動の発生を防止する必要がある区域及び主として工業等の用に供されている区域であって、その区域内の住民の生活環境を悪化させないため、著しい振動の発生を防止する必要がある区域
 - 2 昼間及び夜間とは、それぞれ次の各号に掲げる時間の範囲内において都道府県知事(市の区域内の 区域に係る時間については、市長。)が定めた時間をいう。
 - (1) 昼間 午前5時、6時、7時又は8時から午後7時、8時、9時又は10時まで
 - (2) 夜間 午後7時、8時、9時又は10時から翌日の午前5時、6時、7時又は8時

② 道路交通振動に係る要請限度の区域指定一覧(県指定分:令和2年4月1日以降)

対象		区域の区分	
刈水	第一	第二種区域	
	第一種低層住居専用地域	第二種低層住居専用地域	近隣商業地域
Ø ⊞T++	第一種中高層住居専用地域	第二種中高層住居専用地域	商業地域
各町村	第一種住居地域	第二種住居地域	準工業地域
	準住居地域	用途地域の定めのない地域	工業地域

注 市の区域内の地域については、各市が区域指定を行うこととされている。

③ 道路交通振動に係る要請限度の昼間及び夜間の時間の指定

昼間	午前8時から午後8時まで
夜間	午後8時から翌日の午前8時まで

注 市の区域内の区域については、各市が時間の指定を行うこととされている。

5-2 和歌山市道路交通振動測定及び交通量調査結果一覧

番			区域	車	振動レベ	ル (dB)		交通量	(台)	
号	道路名	測定場所	の区	線数	昼 間	夜間	昼間 8 ~20時		夜間20~8時	
7			分	奴	8~20時	20~8時	台数/10分	大型混入率	台数/10分	大型混入率
1	国道24号線	本町四丁目	2	4	48	45	238	7. 1	133	6.8
2	国道24号線	一番丁	2	6	53	51	361	3. 9	184	2. 7
3	国道24号線	中之島	2	2	46	39	142	3. 5	87	2. 3
4	県道和歌山阪南線	小人町南ノ丁	2	6	47	41	317	2.8	191	2. 1
5	県道和歌山阪南線	北島	2	4	38	37	340	4. 4	238	2. 1
6	国道42号線	和歌浦東四丁目	2	4	46	39	389	5. 7	218	5.0
7	国道42号線	布引	2	4	44	41	438	5. 5	281	3. 9
8	国道42号線	小松原通三丁目	2	6	49	46	349	3. 7	188	3. 7
9	県道粉河加太線	松江北二丁目	2	2	44	41	257	4. 3	131	2. 3
10	県道新和歌浦梅原線	今福五丁目	2	4	49	45	246	4. 9	148	4.7
11	県道和歌山港線	築港一丁目	2	4	56	53	132	19.7	73	20. 5
12	県道和歌山停車場線	友田町四丁目	2	8	51	46	221	5. 2	135	3. 7
13	県道和歌山海南線	北中島一丁目	2	4	38	36	348	2. 3	224	1.8
14	県道和歌山野上線	広瀬通丁二丁目	2	4	38	32	311	6. 4	159	6. 9
15	市道野崎184号線	北島	2	2	40	35	62	3. 2	37	0.0
16	県道鳴神木広線	秋月	2	4	38	34	377	6.6	209	6.2
17	県道和歌山橋本線	新中島	1	4	38	36	232	3.0	130	1.5
18	市道本町和歌浦線	屋形町	2	4	49	49	221	2.7	136	2. 2
19	市道大橋島崎町線	雄松町五丁目	2	4	45	36	90	3. 3	41	2.4
20	市道新和歌浦中之島紀三井寺線	中之島	1	4	53	50	167	3.0	119	3.4
21	市道出水栗栖線	出水	1	2	36	31	56	3.6	19	5. 3
22	市道西脇山口線	榎原	1	4	34	31	328	4.0	176	4.0

(注) 区域の区分は、道路交通振動に係る要請限度についての区域

1:第一種区域 2:第二種区域

5-3 振動に係る規制基準(振動規制法)

① 振動規制法第3条第1項に規定する振動規制地域(県指定分:令和2年4月1日以降)

各町村の全域が規制地域となっている。なお、市の区域内の地域については、各市が地域の指定を行うこととされている。

② 特定工場等において発生する振動の規制基準(振動規制法第4条第1項)

	基	準値			
区域の区分	昼間	夜間			
	(8時~20時)	(20時~翌日の8時)			
第1種区域	60 デシベル	55 デシベル			
第2種区域	65 デシベル	60 デシベル			

- 注 1 測定点は、原則として工場又は事業場の敷地境界線上とする。
 - 2 第1種区域(夜間を除く。)又は第2種区域内に所在する学校、保育所、病院、診療所のうち患者を入院させるための施設を有するもの、図書館、特別養護老人ホーム、幼保連携型認定こども園の敷地の周囲おおむね50メートル以内の区域における当該基準は、上記の値からそれぞれ5デシベルを減じた値とする。
 - 3 区域の区分の内容は次のとおりとする。
 - 第1種区域 第1種低層住居専用地域、第2種低層住居専用地域、第1種中高層住居専用地 域、第2種中高層住居専用地域、第1種住居地域、第2種住居地域及び準住居 地域並びに用途地域が定められていない地域

第2種区域 近隣商業地域、商業地域、準工業地域、工業地域及び工業専用地域

4 市の区域内の地域については、各市が規制基準を定めることとされている。

5-4 振動に係る排出基準(和歌山県公害防止条例施行規則第7条)

5-3②の表(振動に係る規制基準(振動規制法))と同様であるが、市の区域を含めて、区域の区分の内容を以下のとおりとして規定している。

第1類区域 第1種低層住居専用地域、第2種低層住居専用地域、第1種中高層住居専用地域、第2種中高層住居専用地域、第1種住居地域、第2種住居地域及び準住居地域並びに用途地域の定めのない地域

第2類区域 上記以外の地域

6 悪臭公害関係

- 6-1 悪臭に係る規制地域及び規制基準(県指定分:令和2年4月1日以降)
 - ① 悪臭防止法第3条第1項に規定する悪臭原因物の規制地域 各町村の全域が規制地域となっている。なお、市の区域内の地域については、各市が 地域の指定を行うこととされている。

② 事業場における特定悪臭物質の規制基準

性	区域の	区分
特定悪臭物質	第一種区域	第二種区域
アンモニア	2	1
メチルメルカプタン	0.004	0.002
硫化水素	0.06	0.02
硫化メチル	0. 05	0.01
二硫化メチル	0. 03	0.009
トリメチルアミン	0.02	0.005
アセトアルデヒド	0. 1	0.05
プロピオンアルデヒド	0. 1	0.05
ノルマルブチルアルデヒド	0. 03	0.009
イソブチルアルデヒド	0. 07	0.02
ノルマルバレルアルデヒド	0.02	0.009
イソバレルアルデヒド	0.006	0.003
イソブタノール	4	0.9
酢酸エチル	7	3
メチルイソブチルケトン	3	1
トルエン	30	10
スチレン	0.8	0.4
キシレン	2	1
プロピオン酸	0.07	0.03
ノルマル酪酸	0.002	0.001
ノルマル吉草酸	0.002	0.0009
イソ吉草酸	0.004	0.001

- 注 1 表各欄に掲げる値の単位は百万分率 (ppm) とする。
 - 2 第一種区域とは、工業地域及び工業専用地域をいい、第二種区域とは、第一種区域以外の区域をいう。
 - 3 事業場の煙突その他の気体排出施設の排出口における特定悪臭物質の流量の規制基準は、悪臭防止法施行規則第3条第1項及び第2項に規定する方法により算出して得た流量とする。
 - 4 事業場から排出される排出水に含まれる特定悪臭物質の敷地外における濃度の規制基準は、悪臭防止法施行規則第4条に規定する方法により算出して得た濃度とする。
 - 5 市の区域内の地域については、各市が規制基準を定めることとされている。

7 化学物質対策関係

7-1 ダイオキシン類に係る環境基準一覧

媒体	基 準 値	備考
大 気	0.6 pg-TEQ/m³以下	年平均値
水 質 (水底の底質を除く。)	1 pg-TEQ/L 以下	年平均値
水底の底質	150 pg-TEQ/g 以下	
土 壌	1,000 pg-TEQ/g 以下	

7-2 ダイオキシン類常時監視結果一覧

令和6年度和歌山県ダイオキシン類常時監視結果一覧(国土交通省、和歌山市の測定結果含む。)

<u> </u>	1 7 7 79	111. 2 TITE DOUBLY	7 見(凹上		4/(H) 1/4 :> [V1/		٥٥/
	測 定		測定	環境	忠		
区 分	地点数	平均値	中央値	最小値	最大値	基準	単位
一般環境	11	0.0082	0.0056	0.0027	0.023		
発生源 周辺	1	0.016	0.016	0.0077	0. 025	0.6	pg-TEQ/ m³
合計	12	0.0089	0.0059	0.0027	0.025		
河川	29	0.13	0.096	0.064	0.39		
海域	30	0.071	0.064	0.062	0. 17	1	pg-TEQ/L
合計	59	0.10	0.073	0.062	0.39		
河川	22	8. 2	3.5	0.60	41		
海域	26	5. 7	2.2	0.69	33	150	pg-TEQ/g
合計	48	6. 7	2.3	0.60	41		
_	14	0.065	0.064	0.062	0.080	1	pg-TEQ/L
一般環境	14	0.46	0.058	0.0096	4.6		
発生源 周辺	8	0. 27	0. 16	0.028	1. 1	1,000	pg-TEQ/g
合計	22	0.39	0. 13	0.0096	4.6		
	区 一発周合河海合河海合 一般周 分 環源 分 環源 一般生辺計川域計川域計 環源 境源	区分測定地点数一般環境11発生源 周辺1合計12河川29海域30合計59河川22海域26合計48-14一般環境14発生源 周辺8	区分測定地点数平均値一般環境110.0082発生源 周辺10.016合計120.0089河川290.13海域300.071合計590.10河川228.2海域265.7合計486.7一140.065一般環境140.46発生源 周辺80.27	区分測定地点数平均値中央値一般環境110.00820.0056発生源 周辺10.0160.016合計120.00890.0059河川290.130.096海域300.0710.064合計590.100.073河川228.23.5海域265.72.2合計486.72.3一140.0650.064一般環境140.460.058発生源 周辺80.270.16	区分 測定 測定結果 地点数 平均値 中央値 最小値 一般環境 11 0.0082 0.0056 0.0027 発生源周辺 1 0.016 0.016 0.0077 合計 12 0.0089 0.0059 0.0027 河川 29 0.13 0.096 0.064 海域 30 0.071 0.064 0.062 合計 59 0.10 0.073 0.062 河川 22 8.2 3.5 0.60 海域 26 5.7 2.2 0.69 合計 48 6.7 2.3 0.60 一般環境 14 0.065 0.064 0.062 一般環境 14 0.46 0.058 0.0096 発生源周辺 8 0.27 0.16 0.028	区分 測定 測定結果 地点数 平均値 中央値 最小値 最大値 一般環境 11 0.0082 0.0056 0.0027 0.023 発生源周辺 1 0.016 0.016 0.0077 0.025 合計 12 0.0089 0.0059 0.0027 0.025 河川 29 0.13 0.096 0.064 0.39 海域 30 0.071 0.064 0.062 0.17 合計 59 0.10 0.073 0.062 0.39 河川 22 8.2 3.5 0.60 41 海域 26 5.7 2.2 0.69 33 合計 48 6.7 2.3 0.60 41 - 14 0.065 0.064 0.062 0.080 一般環境 14 0.46 0.058 0.0096 4.6 発生源周辺 8 0.27 0.16 0.028 1.1	区分 測定 測定結果 地点数 平均値 中央値 最小値 最大値 発生源周辺 1 0.0082 0.0056 0.0027 0.023 発生源周辺 1 0.016 0.016 0.0077 0.025 河川 29 0.13 0.096 0.064 0.39 海域 30 0.071 0.064 0.062 0.17 1 合計 59 0.10 0.073 0.062 0.39 河川 22 8.2 3.5 0.60 41 海域 26 5.7 2.2 0.69 33 150 合計 48 6.7 2.3 0.60 41 - 14 0.065 0.064 0.062 0.080 1 一般環境 14 0.46 0.058 0.0096 4.6 発生源周辺 8 0.27 0.16 0.028 1.1 1,000

備考:毒性等量の算出には、WHO-TEF(2006)を用いている。 備考:毒性等量の算出には、WHO-TEF(2006)を用いている。

7-3 ダイオキシン類環境調査結果(大気)

① ダイオキシン類環境調査測定点図 (大気) (和歌山市域以外)

② ダイオキシン類環境調査結果一覧(大気)

(和歌山市域) 和歌山市調査

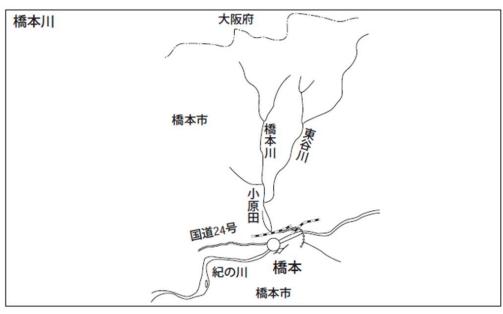
No.	調査地点			調査結果(pg-TEQ/㎡)		
	地点名称	地域分類	所在地	夏季	冬季	年平均
1	木本連絡所	一般環境	木ノ本	0. 0089	0.011	0.010
		(継続調査地域)				
2	高松連絡所	一般環境	東高松	0. 0088	0. 020	0.014
		(継続調査地域)				
3	安原支所	一般環境	桑山	0. 0069	0. 0076	0. 0073
		(継続調査地域)				
4	河南コミュニティセンター	一般環境	布施屋	0. 0060	0. 023	0.015
		(継続調査地域)				
5	鳴神文化会館	発生源周辺	鳴神	0. 0077	0. 025	0.016
) 1 1 1/N/H X2	11 644	0.0011		0.010

【環境基準 大気: 0.6pg-TEQ/m³】

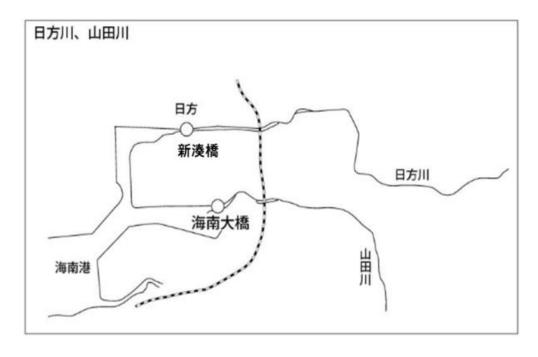
備考1:夏季:令和6年7月26日~8月2日、冬季:令和7年1月27日~2月3日

備考2:毒性等量の算出には、WHO-TEF(2006)を用いている。

(和歌山市域以外) 和歌山県調査

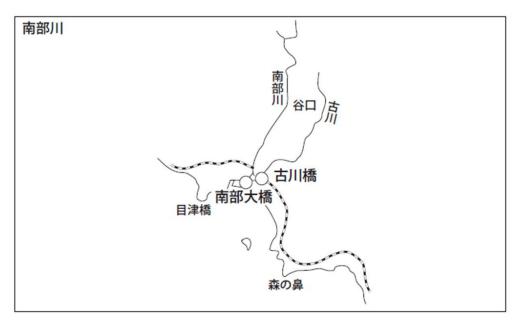

No.	調査地点			調 査 結 果 (pg-TEQ/m³)			
	地点名称	地域分類	所在地	夏季	冬季	年平均	
1	伊都総合庁舎	一般環境 (継続調査地域)	橋本市	0. 0045	0. 0057	0. 0051	
2	那賀総合庁舎	一般環境 (継続調査地域)	岩出市	0. 0050	0. 0053	0. 0052	
3	海南保健所	一般環境 (継続調査地域)	海南市	0. 0047	0. 0043	0. 0045	
4	湯浅保健所	一般環境 (継続調査地域)	湯浅町	0.020	0.014	0.017	
5	御坊監視支所	一般環境 (継続調査地域)	御坊市	0. 0050	0. 0051	0. 0051	
6	西牟婁総合庁舎	一般環境 (継続調査地域)	田辺市	0. 0027	0. 0038	0. 0033	
7	東牟婁総合庁舎	一般環境 (継続調査地域)	新宮市	0. 0055	0. 0035	0. 0045	

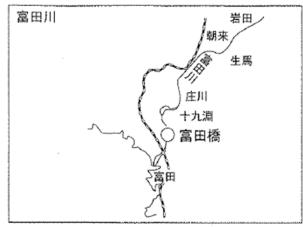
【環境基準 大気: 0.6pg-TEQ/m³】

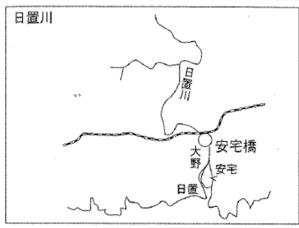

備考1:毒性等量の算出には、WHO-TEF(2006)を用いている。

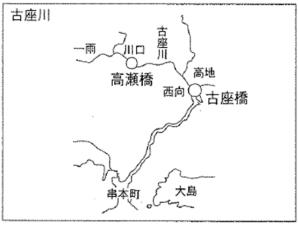
備考 2: 夏季: 令和 6 年 6 月 19 日~26 日 (No. 1, 2, 3, 6, 7)、令和 6 年 6 月 18 日~25 日 (No. 4, 5) 冬季: 令和6年12月13日~20日 (No. 1, 2, 3, 6, 7)、令和6年12月12日~19日 (No. 4, 5)

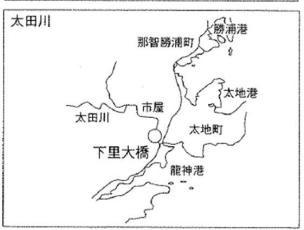

7-4 ダイオキシン類環境調査結果 (公共用水域 (河川) 水質・底質) ① ダイオキシン類環境調査測定点図 (公共用水域 (河川) 水質・底質)

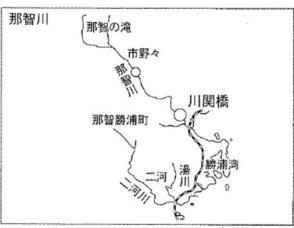














② ダイオキシン類環境調査結果一覧(公共用水域(河川)水質・底質)

(和歌山市域) 和歌山市調査

N -		調査結果(毒性等量)					
No ·	調査地点	採取日	水質 (pg-TEQ/L)	採取日	底質 (pg-TEQ/g)		
1	大門川 伊勢橋	R6. 4. 18 R7. 1. 22	0. 11 0. 39	R6. 4. 18	10		
2	有本川 若宮橋	R6. 4. 19 R7. 1. 22	0. 13 0. 091	R6. 4. 19	1.6		
3	真田堀川 甫斉橋	R6. 4. 18 R7. 1. 22	0. 13 0. 10	R6. 4. 18	3. 5		
4	和歌川 海草橋	R6. 4. 19 R7. 1. 22	0. 27 0. 22	R6. 4. 19	41		
5	和歌川 旭橋	R6. 4. 19 R6. 1. 9	0. 13 0. 076	R6. 4. 19	4.6		
6	和田川 新橋	R6. 4. 19 R7. 1. 22	0. 13 0. 074	R6. 4. 19	9. 9		
7	市堀川 住吉橋	R6. 4. 18 R7. 1. 22	0. 091 0. 099	R6. 4. 18	16		
8	土入川 土入橋	R6. 4. 18 R7. 2. 8	0. 12 0. 10	R6. 4. 18	12		
9	土入川 河合橋	R6. 4. 18 R7. 2. 8	0. 20 0. 11	R6. 4. 18	20		
10	市堀川 材木橋	R6. 4. 18	0. 15	-	-		
11	和田川 丈夫橋	R7. 1. 22	0.34	-	-		

【環境基準 水質:1pg-TEQ/L、底質:150pg-TEQ/g】

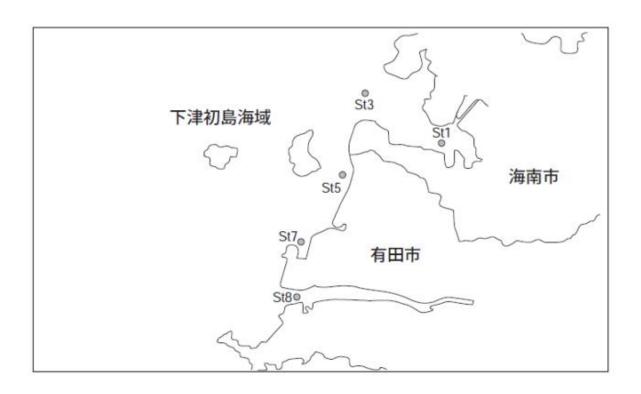
(和歌山市域以外) 和歌山県調査

No.	以と人フトノ イロ可入し	調査地点		調査結果(毒性等量)			
	調査均	也点名称	所在地	採取日	水質 (pg-TEQ/L)	底質 (pg-TEQ/g)	
1	橋本川	橋本橋	橋本市	R6. 7. 11	0. 096	_	
2	貴志川	北島橋	幻の川士	R6. 9. 25	0.072	_	
3	貝心川	諸井橋	紀の川市	R6. 9. 25	-	0.69	
4	日方川	新湊橋	海南市	R6. 7. 25 R6. 9. 24 R7. 1. 21	- 0. 20 0. 094	2. 0 - 6. 7	
5	山田川	海南大橋	海南市	R6. 7. 25 R7. 1. 21	0. 13 0. 13	15 57	
6	有田川	保田井堰	有田市	R6. 9. 24	0. 065	0.67	
7	日高川	若野橋	日高川町	R6. 9. 24	0. 065	0.61	
8	南部川	南部大橋	みなべ町	R6. 7. 12	0. 067	_	
9	古川	古川橋	みなべ町	R6. 7. 12	0. 37	_	
10	会津川	高尾大橋	田辺市	R6. 7. 11 R6. 7. 18	0. 091 -	- 0. 77	
11	富田川	富田橋	白浜町	R6. 7. 11	0. 078	0.60	
12	日置川	安宅橋	白浜町	R6. 7. 11	0. 085	_	
13	十成川	古座橋	串本町	R6. 7. 17	0.064	_	
14	古座川 高瀬橋		古座川町	R6. 7. 11	_	0.61	
15	太田川	下里大橋	那智勝浦町	R6. 7. 17	0.068	_	
16	那智川	川関橋	那智勝浦町	R6. 7. 17	0.069	_	
17	二河川	二河橋	那智勝浦町	R6. 7. 17	0.064	_	

【環境基準 水質:1pg-TEQ/L、底質:150pg-TEQ/g】

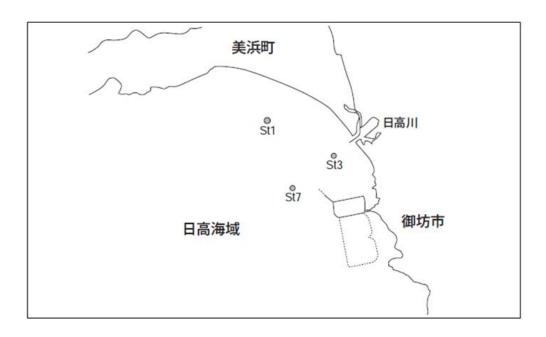
備考:毒性等量の算出には、WHO-TEF(2006)を用いている。

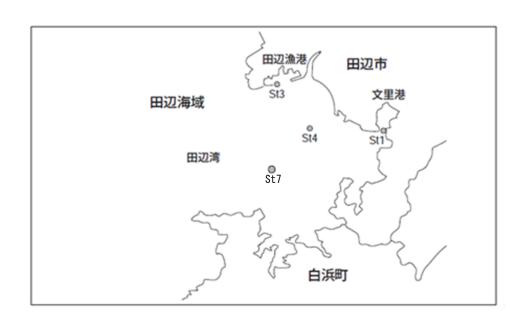
国土交通省近畿地方整備局調査

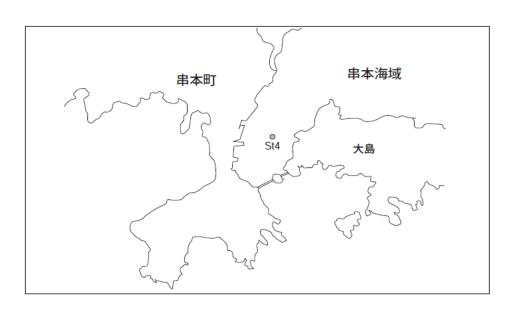

 人也自然 配力 是 佣 内 侧 且								
	調査地点	調査結果(毒性等量)						
No.	調査地点名称	所在地	採取日	水質(pg-	底質(pg-			
	则且迟 流石机			TEQ/L)	TEQ/g)			
1	紀の川 船戸	岩出市	R6. 10. 1	0. 082	0. 26			
2	熊野川 熊野大橋	新宮市	R6. 10. 2	0.074	0. 22			

【環境基準 水質:1pg-TEQ/L、底質:150pg-TEQ/g】

7-5 ダイオキシン類環境調査結果(公共用水域(海域)水質・底質)


① ダイオキシン類環境調査測定点図(公共用水域(海域)水質・底質)





② ダイオキシン類環境調査結果一覧(公共用水域(海域)水質・底質)

(和歌山市域) 和歌山市調査

	THE LEW LA		3m-5/1.m /-t-0.4			
No	調査地点	調査結果(毒性等量)				
No.	調査地点名称	採取日	水質(pg-TEQ/L)	底質(pg-TEQ/g)		
1	松江沖	R6. 9. 11	0.063	1.3		
2	北港入口	R6. 9. 11	0.063	0.75		
3	北港内	R6. 9. 11	0.066	1.1		
4	北港沖	R6. 9. 11	0.064	5. 0		
5	本港内	R6. 9. 12	0. 087	19		
6	本港入口	R6. 9. 27	0.098	9. 5		
7	本港沖	R6. 9. 11	0. 082	4. 1		
8	南港内	R6. 9. 12	0. 076	16		
9	和歌川河口	R6. 9. 27	0.065	0. 91		
10	築地橋	R6. 9. 27	0. 17	33		

【環境基準 水質:1pg-TEQ/L、底質:150pg-TEQ/g】

(和歌山市域以外) 和歌山県調査

	調査地点			調査結果(毒性等量)			
No.	調査地点名称		所在地	採取日	水質 (pg-TEQ/L)	底質 (pg-TEQ/g)	
1		St. 2	海南港	R6. 7. 25 R7. 1. 12	0. 13 0. 076	61 57	
2	海南海域	St. 3	海南港	R6. 7. 25	0. 075	18	
3		St. 4	海南港	R6. 7. 25	0. 073	-	
4		St. 1	下津港	R6. 7. 26	0.064	12	
5	下津初島海域	St. 5	初島沖	R6. 7. 26	0.063	2. 0	
6	广净彻局傅坝	St. 7	初島沖	R6. 7. 26	0.064	_	
7		St. 8	有田川河口	R6. 7. 26	0.066	1. 1	
8		St. 2	湯浅広港	R6. 7. 26	0.066	_	
9	湯浅海域	St. 3	栖原漁港沖	R6. 7. 26	0.064	2. 3	
10		St. 5	湯浅広港沖	R6. 7. 26	0.063	-	
11	由良海域	St. 5	由良港	R6. 8. 8	_	3. 5	
12	田及伊坝	St. 6	由良港沖	R6. 8. 8	0.062	0. 72	
13	日高海域	St. 3	日高港沖	R6. 8. 6	0.070	1. 6	
14		St. 1	文里港	R6. 7. 18	0.063	_	
15	田辺海域	St. 3	田辺漁港	R6. 7. 18	0.064	6. 3	
16		St. 4	田辺湾	R6. 7. 18	0.064	1. 7	
17	串本海域	St. 4	串本漁港沖	R6. 7. 18	0.063	0.70	
18	勝浦海域	St. 2	森浦湾	R6. 7. 17	0.062	2. 4	
19	份佃供收	St. 6	勝浦湾	R6. 7. 17	0.065	_	
20	三輪崎海域	St. 1	新宮港	R6. 7. 17	0.064	0. 69	
21	— 押 門 (St. 2	新宮港	R6. 7. 17	0.064	_	

【環境基準 水質:1pg-TEQ/L、底質:150pg-TEQ/g】

7-6 ダイオキシン類環境調査結果一覧(地下水)

(和歌山市域) 和歌山市調査

Nī -	調査地点	調査結果(pg-TEQ/L)
No.	加重地点	採取日 R6.5.29
1	雄湊	0.062
2	宮北	0.065
3	由	0.064
4	西和佐	0.064

【環境基準 水質:1pg-TEQ/L】

備考:毒性等量の算出には、WHO-TEF(2006)を用いている。

(和歌山市域外) 和歌山県調査

歌(百年教/上) 有歌(百水胸直						
No	調	査 地点	調査結果(毒性等量)			
No.	市町村	所在地	採取日	結果 (pg-TEQ/L)		
1	海南市	下津町橘本	R6. 10. 24	0.063		
2	紀の川市	切畑	R6. 10. 24	0.063		
3	岩出市	根来	R6. 9. 5	0.064		
4	4 高野町 高野山		R6. 10. 24	0.062		
5	有田川町	立石	R6. 10. 25	0. 071		
6	印南町	印南	R6. 10. 30	0.064		
7	田辺市	鮎川	R6. 10. 30	0.063		
8	上富田町	朝来	R6. 10. 30	0.080		
9	那智勝浦町	中里	R6. 10. 29	0.062		
10	古座川町	高池	R6. 10. 29	0.062		

【環境基準 水質:1pg-TEQ/L】

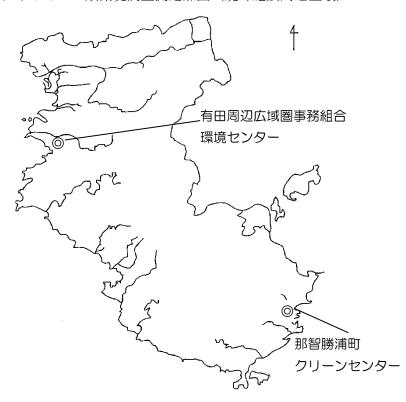
7-7 ダイオキシン類環境調査結果一覧(一般環境土壌)

(和歌山市域) 和歌山市調査

Mo	調査地点	調査結果(毒性等量)		
No.	<u> </u>	採取日	結果 (pg-TEQ/g)	
1	有功	R6. 7. 25	0. 19	
2	有功	R6. 7. 25	0. 047	
3	紀伊	R6. 7. 25	0. 025	
4	川永	R6. 7. 25	0.40	

【環境基準 土壤:1,000pg-TEQ/g】

備考:毒性等量の算出には、WHO-TEF(2006)を用いている。


(和歌山市域外) 和歌山県調査

-l i-l]	W. 山中级/17 有W. 山东柳直							
	No.	請	査地点	調査結果(毒性等量)				
	NO.	市町村	所在地	採取日	結果 (pg-TEQ/g)			
Ī	1	海南市	下津町市坪	R6. 10. 24	0.0096			
Ī	2	紀の川市	江川中	R6. 10. 24	0. 049			
	3	岩出市	水栖	R6. 10. 24	0. 035			
Ī	4	高野町	高野山	R6. 10. 24	0. 032			
Ī	5	有田川町	本堂	R6. 10. 25	0. 034			
Ī	6	印南町	山口	R6. 10. 30	0. 20			
	7	田辺市	合川	R6. 10. 30	0.34			
Ī	8	上富田町	生馬	R6. 10. 30	0.066			
	9	那智勝浦町	中里	R6. 10. 29	0. 39			
	10	古座川町	小川	R6. 10. 29	4.6			

【環境基準 土壤:1,000pg-TEQ/g】

7-8 ダイオキシン類環境調査結果 (焼却施設周辺土壌)

① ダイオキシン類環境調査測定点図 (焼却施設周辺土壌)

② ダイオキシン類環境調査結果一覧 (焼却施設周辺土壌)

(和歌山市域外) 和歌山県調査

		調査均	也点	調査結果(毒性等量)	
施設名	No.	市町村	所在地	採取日	結果 (pg-TEQ/g)
	1	有田市	糸我町中番		0.028
有田周辺広域圏事務	2	有田川	宮原町須谷	R6. 10. 25	1. 1
組合環境センター	3	有田川町	天満		0. 28
	4	有四川町	田口		0. 27
	1		天満①		0. 17
那智勝浦町	2	117 左口 1943 (大 m)字	河関	R6. 10. 29	0.10
クリーンセンター	3	那智勝浦町	天満②		0.059
	4		天満③		0.15

【環境基準 土壤:1,000pg-TEQ/g】

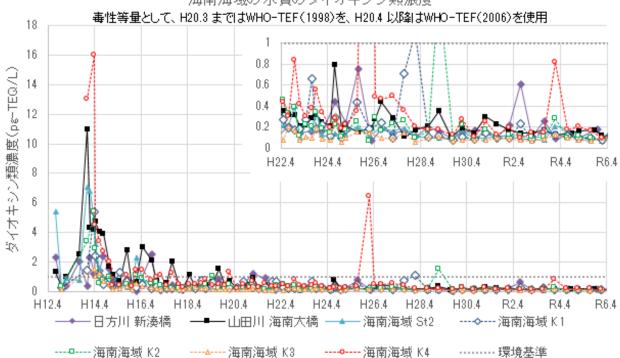
7-9 ダイオキシン類環境継続調査結果(海南地区)

① ダイオキシン類環境継続調査測定点図

② ダイオキシン類環境継続調査結果一覧

(海南地区公共用水域・水質) 和歌山県調査

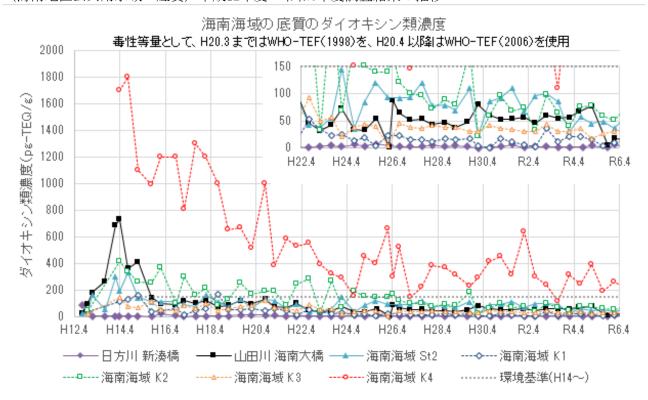
	調査結果(pg-TEQ/L)				
調査地点	夏季		冬季		F = 14
	測定日	結果	測定日	結果	年平均
日方川 新湊橋	R6. 9. 24	0. 20	R7. 1. 21	0.094	0. 15
山田川 海南大橋	R6. 7. 25	0. 13	K1. 1. 21	0.10	0. 12
海南海域 St.2		0. 13	R7. 1. 21	0.076	0. 10
海南海域 St.3		0.075			0. 075
海南海域 St.4		0.073			0.073
海南海域 K1	R6. 7. 25	0. 20		0.067	0. 13
海南海域 K2		0. 20	R7. 1. 21	0.070	0. 14
海南海域 K3		0. 076	N1. 1. 21	0.092	0.084
海南海域 K4		0. 12		0.11	0. 12


【環境基準 水質:1pg-TEQ/L】

備考1:毒性当量の算出には、WHO-TEF(2006)を用いている。

備考2:環境基準値は年間平均値とする。

(海南地区公共用水域・水質) 平成12年度~令和6年度調査結果の推移


(海南地区公共用水域・底質) 和歌山県調査

	調査結果(pg-TEQ/g)					
調査地点	夏	季	冬	冬季		
	測定日	結果	測定日	結果		
日方川 新湊橋	R6. 7. 25	2. 0	R7. 1. 21	6. 7		
山田川 海南大橋	R6. 7. 25	15	R7. 1. 21	25		
海南海域 St. 2		61	R7. 1. 21	61		
海南海域 St.3		18				
海南海域 St. 4						
海南海域 K1	R6. 7. 25	13		16		
海南海域 K2		76	R7. 1. 21	41		
海南海域 K3		34	K1.1.21	28		
海南海域 K4		210		310		

【環境基準 底質:150pg-TEQ/g】

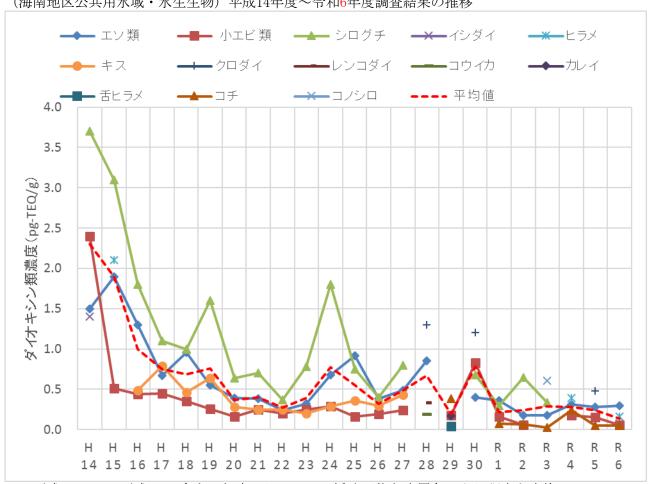
備考:毒性等量の算出には、WHO-TEF(2006)を用いている。

(海南地区公共用水域・底質) 平成12年度~令和6年度調査結果の推移

7-10 ダイオキシン類水生生物調査結果

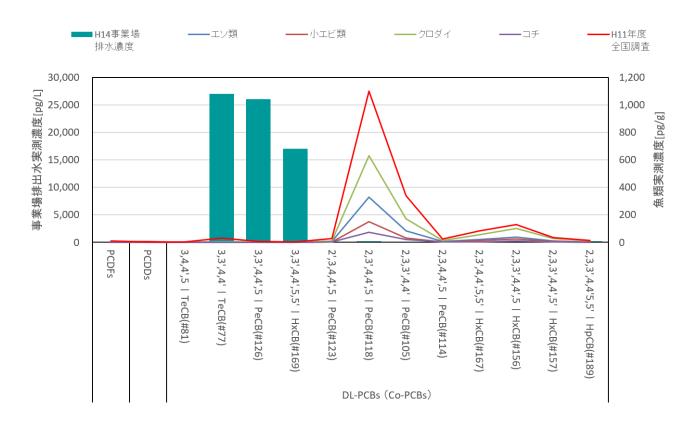
(海南地区公共用水域・水生生物) 和歌山県調査

調査魚種	採取年月日	調査地点	調査結果(pg-TEQ/g)
エソ類			0.36
小エビ類	R6. 6. 11	海南海域 St. 1 周辺	0. 039
ヒラメ	Ko. 6. 11	伊曽伊坝 St. 1 同辺	0. 17
コチ			0. 042
	全魚種平均値		0. 19


備考:毒性等量の算出には、WHO-TEF(1998)を用いている。

(参考) 平成11年度環境庁全国調査結果

調査魚種	検体数	調	査結果(pg-TEQ/g)
明旦.炽1里	炽쒸奴	最小値	最大値	平均値
全魚種平均値	2, 832	0. 032	33	1. 4


備考:毒性等量の算出には、WHO-TEF(1998)を用いている。

(海南地区公共用水域・水生生物) 平成14年度~令和6年度調査結果の推移

平成14、15、平成28~令和6年度においては、採取可能な底層魚により調査を実施

(海南地区公共用水域・水生生物) ダイオキシン類の異性体別濃度分布

8 総合的取り組み関係

8-1 公害防止条例に基づく指定工場一覧

(令和7年3月31日現在)

工場名	所在地
日本製鉄株式会社 関西製鉄所(和歌山)	和歌山市湊 1850 番地
和歌山共同火力株式会社	和歌山市湊 1850 番地
河合石灰工業株式会社 和歌山工場	和歌山市湊 1850 番地
本州化学工業株式会社 和歌山工場	和歌山市小雑賀2丁目5番115号
花王株式会社 和歌山工場	和歌山市湊 1334 番地
南海化学株式会社 和歌山工場	和歌山市小雑賀1丁目1番38号
ENEOS和歌山石油精製株式会社 海南工場	海南市藤白 758 番地
日本製鉄株式会社 関西製鉄所(海南)	海南市船尾 260 番地の 100
ENEOS株式会社 和歌山製造所	有田市初島町浜 1000 番地

(設置許可した工場)

(令和7年3月31日現在)

甲	乙	対象事業場		立会	人		締結・変更な	
和歌山県	日本製鉄㈱	関西製鉄所(和歌山) 和歌山市湊 1850 番地に立地する同製	海有紀岩	南田の川出	市市	長長長長	昭和46年2月27日 昭和48年6月12日 昭和50年3月10日 昭和53年3月31日 昭和61年1月21日	(締結) (変更) (変更) (変更) (変更)
和歌山市		鉄所及び関連工場	T.	==v/	-4-		平成11年7月12日 平成16年3月24日 平成25年3月27日 令和2年4月1日	(変更) (変更) (変更) (変更)
和 歌 山 県 海南市は 別途協定 を締結	ENEOS和歌山 石油精製㈱	海南工場	和有下野美吉	歌田津上里備	市市町町町町町	長長長長長長	昭和47年3月7日 昭和50年9月20日 平成23年6月27日	(締結) (変更) (覚書変更)
和歌山県有田市	ENEOS㈱	和歌山製造所	和海下野美湯吉	歌南津上里浅備	市市町町町町町	長長長長長長	昭和47年3月7日 昭和50年9月20日 昭和53年3月31日 平成13年5月1日	
和 歌 山 県 由 良 町	常石由良ドック㈱	常石由良ドック㈱					昭和48年2月5日	(締結)
和 歌 山 県御 坊 市美 浜 町	関西電力㈱	御坊発電所	日由日み印湯広	高良高な南浅川		長長長長長長	昭和59年3月14日 平成12年2月4日 令和3年2月1日	(変更)

8-3 令和 6 年度市町村別・公害種類別苦情受付件数一覧

						典型	7公害				左記	以外
		合 計	大気汚染	水質汚濁	土壤污染	騒音	低周波	振動	地盤沈下	悪臭	廃棄物投棄	その他
	市町村名		(A01)	(A02)	(A03)	(A04)	(A041)	(A05)	(A06)	(A07)	(B01)	(B02)
000	県庁	96	17	40	1	1	0	0	0	14	15	8
201	和歌山市	117	18	18	0	46	1	8	0	27	0	0
202	海南市	44	23	1	0	8	0	0	0	11	1	0
203	橋本市	151	0	0	0	4	0	0	0	0	13	134
204	有田市	63	7	5	0	4	0	0	0	3	6	38
205	御坊市	4	0	1	0	2	0	0	0	1	0	0
206	田辺市	84	2	2	0	2	0	0	0	2	6	70
207	新宮市	6	3	0	0	1	0	0	0	2	0	0
208	紀の川市	26	5	1	0	6	1	0	0	6	8	0
366	有田川町	12	0	3	0	1	0	0	0	2	0	6
381	美浜町	1	0	1	0	0	0	0	0	0	0	0
404	上富田町	7	4	1	0	2	0	0	0	0	0	0
421	那智勝浦町	106	2	1	0	5	0	0	0	1	4	93
	合計	717	81	74	1	82	2	8	0	69	53	349

[※]上記以外の市町村では苦情受付はありませんでした。

9 公害防止に関する特定施設等の届出状況

9-1 法律に基づく届出状況

① 大気汚染防止法に基づくばい煙発生施設届出数

(令和7年3月31日現在累計数)

									届出	: 地	域「	为 訳					
項	ばい煙発生施設の種類	届出 施設数	和歌山市	海南市	橋本市	有田市	御坊市	田辺市	新宮市	紀の川市	岩出市	海草郡	伊都郡	有田郡	日高郡	西牟婁郡	東牟婁郡
1	ボイラー	824	325	52	30	12	11	54	9	72	23	4	41	21	38	99	33
2	水性ガス又は油ガスの発生の用に供するガス発生炉 及び加熱炉	1	1														
3	金属の精錬又は無機化学工業品の製造の用に供する 焙焼炉、焼結炉及び煆焼炉	3	3														
4	金属の精錬の用に供する溶鉱炉、転炉及び平炉	5	5														
5	金属の精製又は鋳造の用に供する溶解炉	2	0									2					
6	金属の鍛造若しくは圧延又は金属若しくは金属製品の熱処理の用に供する加熱炉	97	70	18	8					1							
7	石油製品、石油化学製品又はコールタール製品の製造の用に供する加熱炉	45	3	12		30											
8	石油の精製の用に供する流動接触分解装置のうち触 媒再生塔	1	0			1											
8-2	石油ガス洗浄装置に附属する硫黄回収装置のうち燃 焼炉	2	0			2											
9	窯業製品の製造の用に供する焼成炉及び溶融炉	16	16														
10	無機化学工業品又は食料品の製造の用に供する反応 炉及び直火炉	18	7						-	-					11		
11	乾燥炉	76	25	2	2		3	14	4	5	4		1	1	10	2	3
12	製銑、製鋼又は合金鉄若しくはカーバイドの製造の用 に供する電気炉	4	4														
13	廃棄物焼却炉	56	22	2	4		2	3	3	3	2			2		6	7
14	銅、鉛又は亜鉛の精錬の用に供する焙焼炉、焼結炉、 溶鉱炉、転炉、溶解炉及び乾燥炉	1	0											1			
15	カドミウム系顔料又は炭酸カドミウムの製造の用に供する乾燥施設		0														
16	塩素化エチレンの製造の用に供する塩素急速冷却施 設		0														
17	塩化第二鉄の製造の用に供する溶解槽		0														
18	活性炭の製造の用に供する反応炉	4	0												4		1
19	化学製品の製造の用に供する塩素反応施設、塩化水素反応施設及び塩化水素吸収施設	17	17														
20	アルミニウムの製錬の用に供する電解炉		0														
21	燐、燐酸、燐酸質肥料又は複合肥料の製造の用に供 する反応施設、濃縮施設、焼成炉及び溶解炉		0														
22	弗酸の製造の用に供する凝縮施設、吸収施設及び蒸 溜施設		0														
23	トリポリ燐酸ナトリウムの製造の用に供する反応施設、 乾燥炉及び焼成炉		0														
24	鉛の第二次精錬又は鉛の管、板若しくは線の製造の 用に供する溶解炉		0														
	鉛蓄電池の製造の用に供する溶解炉		0														
20	鉛系顔料の製造の用に供する溶解炉、反射炉、反応 炉及び乾燥施設		0														
27	硝酸の製造の用に供する吸収施設、漂白施設及び濃 縮施設		0														
28	コークス炉	3	3														
29	ガスタービン	5	2	1				2									
30	ディーゼル機関	94	78			11			3					2			
31	ガス機関		0														
32	ガソリン機関		0														
	<u>ā</u> †	1274	581	87	44	56	16	73	19	81	29	6	42	27	63	107	43
	届出工場·事業場数	387	142	10	22	9	9	33	11	24	9	3	12	17	17	48	21

② 大気汚染防止法に基づく揮発性有機化合物排出施設届出数

(令和7年3月31日現在累計数)

									届出	出地	域「	内 訳					
項	揮発性有機化合物排出施設の種類	届出 施設数	和歌山市	海南市	橋本市	有田市	御坊市	田辺市	新宮市	紀の川市	岩出市	海 草 郡	伊 都 郡	有田郡	日高郡	西牟婁郡	東牟婁郡
	揮発性有機化合物を溶剤として使用する化学製品の 製造の用に供する乾燥施設																
2	塗装施設	7		1	1					5							
3	塗装の用に供する乾燥施設																
	印刷回路用銅張積層板、粘着テープ若しくは粘着シート、はく離紙又は包装材料の製造に係る接着の用に供する乾燥施設	5													5		
5	接着の用に供する乾燥施設	2													2		
	印刷の用に供する乾燥施設(オフセット輪転印刷に係るものに限る。)																
7	印刷の用に供する乾燥施設(グラビア印刷に係るものに限る。)																
8	工業の用に供する揮発性有機化合物による洗浄施設																
9	ガソリン、原油、ナフサその他の温度37.8度において 蒸気圧が20kPaを超える揮発性有機化合物の貯蔵タ ンク																
	āt	14		1	1					5					7	·	
	届出工場・事業場数	6		1	1					2					2		

③ 大気汚染防止法に基づく一般粉じん発生施設届出数

(令和7年3月31日現在累計数)

項	施設の種類	計	和歌山市	海南市	橋本市	有田市	御坊市	中心田	新宮市	紀の三市	斗 圧 诜	海草郡	伊都郡	有田郡	二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二	西牟婁郡	東牟婁郡
1	コークス炉	3	3														
2	 鉱物又は土石の堆積場 	114	51	7	2	8	7	1	3	5			3	16	9	2	
3	ベルトコンベア及び バケットコンベア	1094	915		24	2	10	3	8	41	54			3	10	12	12
4	破砕機及び摩砕機	127	33		11	1	7		16	14	22		1	3	12	3	4
5	ふるい	125	79		7				5	14	15			1	4		
	計	1463	1081	7	44	11	24	4	32	74	91	0	4	23	35	17	16
	届出工場·事業場数	146	36	5	9	5	12	2	8	7	5		4	17	18	9	9

④ 大気汚染防止法に基づく水銀排出施設設置届出数

(令和7年3月31日現在累計数)

									届出	出地	域「	为 訳					
項	水銀排出施設の種類	届出 施設数	和歌山市	海南市	橋本市	有田市	御坊市	田辺市	新宮市	紀の川市	岩出市	海 草 郡	伊 都 郡	有田郡	日高郡	西牟婁郡	東牟婁郡
1	バーナーの燃料燃焼能力が重油換算一時間当たりー 〇万リットル未満の石炭燃焼ボイラー																
2	前項に掲げるもの以外の石炭燃焼ボイラ―																
	銅又は金の一次精錬の用に供する焙焼炉、焼結炉、 溶鉱炉、転炉、平炉、溶解炉及び乾燥炉																
	鉛又は亜鉛の一次精錬の用に供する焙焼炉、焼結 炉、溶鉱炉、転炉、平炉、溶解炉及び乾燥炉																
5	銅、鉛又は亜鉛の二次精錬の用に供する焙焼炉、焼 結炉、溶鉱炉、転炉、平炉、溶解炉、乾燥炉及び亜鉛 の回収施設	1												1			
	金の二次精錬の用に供する焙焼炉、焼結炉、溶鉱炉、転炉、平炉及び溶解炉																
7	セメントの製造の用に供する焼成炉																
8	廃棄物焼却炉	57	23	2	4		2	3	3	3	2			2		6	7
9	水銀含有再生資源からの水銀回収施設																
	計	58	23	2	4		2	3	3	3	2			3		6	7
	届出工場·事業場数	37	14	2	3		1	2	2	2	1			2		4	4

⑤ 水質汚濁防止法に基づく有害物質貯蔵指定事業場数

(令和7年3月31日現在累計)

工場数	和歌山市	海南市	岩出市	紀の川市	橋本市	有田市	御坊市	田辺市	新宮市	海草郡	伊都郡	有田郡	日高郡	西牟婁郡	東牟婁郡
32	14	5	0	4	3	1	1	0	0	0	1	0	2	1	0

※廃止が確認された有害物質貯蔵指定事業場は除く。

⑥ 水質汚濁防止法に基づく届出特定事業場数

(令和7年3月31日現在累計数)

																						()	3 / I H	•	1 0	/ •	01	_		니스기	計数	· /
	工場数		和歌山	市	岩出市		海南市		紀の川	市	橋本市		有田市		御坊市		田辺市		新宮市		海草郡		伊都郡		有田郡		日高郡		西丰	牟婁郡	東牟婁郡	
	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	,	А В	A E	В
1	-																												_			
1の2	85		2				3								3		45						2		4		15		_	4	7	
2	37		4				1		1		3		1				4		2				1		10		3		-	1	6	_
3	124						9						14		2		13		4	2					31		13			20 4	12	_1
4 E	317 41		1 15				2		4 2		58 3		2		2 2		70 1	6	1				63 6		3 8		76 2		-	20 4	3 4	-
6	41		-								- 3		Z		_ z										- 8				-	-	1	-
7																													+			_
8	20	1	1				1								3		4		7				1				2			1		
9	3		2				·												-												1	
10	91	1	2 14				16		2		3		6		6		11		2		1		4		12		7	1	1	6 1	1	
11	20)	4						2		1				2		3								1		3			3	1	
12	3	1	2														1												_			_
13	 .	_	<u> </u>																										-			_
14	1		1																										+			-
15 16	53		20				4		3		3				3		5		5						2				-	3		-
17	135						13		-		16		8		7		10	1	5				10		10		8			3	4	_
18	1.00		T															•									Ĭ			Ť	İ	
18の2	4	1	1 3																											1 1		
18の3																																
19	27		9				5		1		10		1										1									
20	1	1	1																										-	1 1		_
21 21の2	4	_																											-			-
21003	1																- '						- 1									-
21073	<u> </u>																															_
22	3																2										1		T			
23																													Τ			\Box
23の2	8	<u> </u>	6										1										1									
24	1	1	1					<u> </u>				$\vdash \vdash \vdash$		-	\vdash	-	\vdash		-									-	+	_		_
25	-	-	1									\vdash				-			-										+	+	\vdash	\dashv
26 27	6	١.,	1 3				٠.					H				 			 						-		-	٠.	+	_		\dashv
28	⊤ °		⊤ "									\vdash													- 1				+			\dashv
29																													T			
30																													┰			
31		_		\Box								ш																	ĻΞ	\perp		_]
32	2		1																								1					
33	10	2	2 1				1		2						1	1	1												-	4 1		_
34 35																													-			-
36	1										- 1																		-			-
37	<u> </u>																															_
38																																
38Ø2																																
39																																
40	2										1												1									
41	1										1																					
42	-		-																										+			-
43 44																																-
45																																_
46	10	, ,	1 2								1												1				3	1	1		3	
47	2		1 1												1	1																
48																																
49																																
50 51														1															+			-
51 51Ø2													1	1															_			
51002 51003	1		_																													
	1		1																													_
52			_																													
52 53	1		_																								1					
53 54	1 13		2						1								1				1		2		2		1			3		
53 54 55	1		2		2		8		1 2		4		3		5		1 18	1	6	2	1 4		2 9		2 7		1 1 14	1	1	3 15 2	12	4
53 54 55 56	1 13		2		2		8		1 2		4		3		5		1 18	1	6	2	1 4		2 9		2 7		1 1 14	1	1	3 15 2	12	4
53 54 55 56 57	1 1 13 133	10	2		2		8		1 2		4		3		5		1 18	1	6	2	1 4		2 9		2 7		1 14	1	1	3 15 2	12	4
53 54 55 56	1 1 13 133	10	2		2		8		1 2		1 2		3		5		1 18	1	6	2	1 4		9		7		1 14		1	3 15 2	12	4
53 54 55 56 57 58	1 1 13 133	10	2 24		2		8		1 2				3				1 18		6	2	1 4		2 9						1	1	12	4
53 54 55 56 57 58 59 60 61	1 1 13 133 133 2 15	10	2 2 0 24		2				1 2		2		3								1 4		2 9				2			1 4		4
53 54 55 56 57 58 59 60 61 62	1 1 13 133 133 2 2 15 28	10	2 2 0 24		2						3		3		2				7		1 4		2 9		2		2			1 4	1	4
53 54 55 56 57 58 59 60 61 62 63	1 1 13 133 133 2 15 28	10	2 2 0 24		2				1 2		2		3						7		1 4		2 9				2			1 4		4
53 54 55 56 57 58 59 60 61 62 63 6302	1 1 13 133 133 2 2 15 28	10	2 2 0 24		2						3		1		2				7		1 4		2 9		2		2			1 4	1	4
53 54 55 56 57 58 59 60 61 62 63	1 1 13 133 133 2 2 15 28	10	2 2 0 24		2						3		3		2				7		1 4		2 9		2		2			1 4	1	4
53 54 55 56 57 58 59 60 61 62 63 63 63 63 63 63 64 64 64 62	1 13 133 133 2 15 28 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 2 2 1		2		1		1		3		1		2 2		4	1	7				2 9		2		2 6	4		1 4	1	4
53 54 55 56 57 58 59 60 61 62 63 63 63 63 63 63 64 64 62 63 64 65 64 65 66 66 67 63 63 63 63 63 63 63 63 63 63	1 1 13 133 15 28 15 28 1		1 2 2 4 1 15 1 15 1 15 1 15 1 15 1 15 1		2						3		1		2 2 1 1 1		1 2	1	7 1				2 9		2		2 6	4		1 4 3 3	1	4
53 54 55 56 57 58 59 60 61 62 63 63 63 63 63 63 64 64 64 62 65 66 66	1 13 133 133 2 15 28 1		1 2 2 4 1 15 1 15 1 15 1 15 1 15 1 15 1		2		1		1		3		1		2 2		1 2	1	7 1				2 9		2		2 6	4		1 4	1	4
53 54 55 56 57 58 59 60 61 62 63 63 63 63 64 64 64 60 66 66 66 60 2	1 1 13 133 15 28 1 7 7		1 2 2 4 1 1 5 2 5 5				1		1		1		1		2 2 1 1 1 1	1	1 2 1	1	7 1	1	1				2 2		1 1	4	4	1 4 3 3 1 1 1 1	1 1	4
53 54 55 56 57 58 59 60 61 62 63 63 63 63 63 63 63 63 64 64 62 65 66 66 66 67 68 68 68 68 68 68 68 68 68 68	1 1 13 133 133 2 15 28 1 7 6 26 9	100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 3 3 1 1		1		1 3		1 32		1 1 23		2 2 1 1 1 1 1 45	1	1 2 1 205	1	7 1	1			2 2 9		2 2 1		1 1 1 125	4	4	1 4 3 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 10
53 54 55 56 57 58 59 60 61 62 63 63 63 62 63 63 64 64 60 66 66 66 66 60 2 66 60 60 60 60 60 60 60 60 60	1 1 13 133 15 28 1 7 7	100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 25		1		2 3 1 1 32 32		1 1 23		2 2 1 1 1 1	1	1 2 1 205	7	7 1	1	1				2 2		1 1	4	4	1 4 3 3 1 1 1 1	1 1	1 10
53 54 55 56 57 58 59 60 61 62 63 63 63 63 63 63 63 63 64 64 62 65 66 66 66 67 68 68 68 68 68 68 68 68 68 68	1 1 1 1 1 1 3 1 1 3 2 2 2 2 1 5 5 1 7 7 7 8 9 9 9 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1		1 1 2 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1		1 3		1 32		1 1 23		2 2 1 1 1 1 1 45	1	1 2 1 205	7	7 1	1	1				2 2 1		1 1 1 125	3	33	1 4 3 3 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 10
53 54 55 56 57 58 59 60 61 62 63 63 63 63 64 64 64 64 60 60 66 66 60 60 66 66 60 66 66	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 2 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 25		1 3		2 3 1 1 32 32		1 1 23		2 2 1 1 1 1 45	1	1 2 1 205 1 3	7	7 1	1	1				2 2 1		1 1 1 125 1	3	33	1 1 303 24	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 10
53 54 55 56 57 58 59 60 61 62 63 63 63 63 64 62 65 66 66 66 60 66 66 66 66 66 66	1 133 133 133 2 2 2 2 8 1 1 7 7 7 8 6 6 2 8 9 9 9 125 155 8 8 155 8 156 156 8 156 156 8 156 8 156 8 156 8 156 8 156 8 156 8 156 8 156 8 156 8 156 156 8 156 8 156 8 156 8 156 8 156 8 156 8 156 8 156 8 156 8 156 156 8 156 8 156 8 156 8 156 8 156 8 156 8 156 8 156 8 156 8 156 156 156 156 156 156 156 156 156 156	444	1 1 2 2 2 4 4 1 1 1 1 2 2 2 5 5 5 1177 1 1 2 2 2 5 5 5 1174 1 2 2 2 5 5 5 5 1174 1 2 2 2 5 5 5 5 5 1174 1 2 2 2 5 5 5 5 1174 1 2 2 2 5 5 5 5 1174 1 2 2 2 5 5 5 5 1174 1 2 2 2 5 5 5 5 1174 1 2 2 2 5 5 5 5 1174 1 2 2 2 5 5 5 5 5 1174 1 2 2 2 5 5 5 5 1174 1 2 2 2 5 5 5 5 1174 1 2 2 2 5 5 5 5 1174 1 2 2 2 5 5 5 5 1174 1 2 2 2 5 5 5 5 1174 1 2 2 2 5 5 5 5 5 1174 1 2 2 2 5 5 5 5 1 2 2 2 5 5 5 5 1174 1 2 2 2 5 5 5 5 1 2 2 5 5 5 5 1 2 2 2 5 5 5 5		3 1		1 1 25 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		32 3 2				2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 2 1 205 1 3 3	771	7 1 1	1	10		84		2 2 1 1 49 2		1 1 1 1 1 1 1 5 5	3 3	3 3 :	1 1 1 303 24	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
53 54 55 56 57 58 59 60 61 62 63 63 62 63 63 62 63 63 62 63 63 62 63 63 63 64 62 65 66 66 66 66 66 66 66 66 66	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 2 2 2 4 1 1 1 2 2 5 5 117 4 2 2 988		3 1		1 1 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 2 2 2 2		2 3 1 1 32 32 2		14		2 2 2 1 1 1 1 1 1 1 1	1	1 1 2 1 205 1 3 3 3	771	1 1 43	1	10		84 1		2 2 2 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3	3 3 :	1 1 303 24	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 10
53 54 55 56 57 58 59 60 61 62 63 63 63 63 63 63 64 64 64 62 66 66 66 66 66 66 66 66 66	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 2 2 1 1 1 5 5 5 5 117 1 4 2 2 988 399 399		3 1		1 1 25 1 1 1		10 2 2 1 1		32 3 2				2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 2 1 205 1 3 3 3 3 1 1 1 3	771	7 1 1	1	10		84		2 2 1 1 49 2		1 1 1 1 1 1 1 5 5	3 3	3 3 :	1 1 1 303 24	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 10
53 54 55 56 57 58 59 60 61 62 63 63 63 64 6402 66 66 66 66 66 66 66 66 66 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	41 41 41 41 41 41 41 41 41 41 41 41 41 4	1 1 2 2 2 1 1 15 15 1 1 1 1 1 1 1 1 1 1		3 1		1 1 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 2 2 2 2		2 3 1 1 32 32 14		14		2 2 2 1 1 1 1 1 1 1 1	1	1 1 2 1 205 1 3 3 3	771	7 7 1 1 1 1 43	1	10		84 1		2 2 2 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3	3 3 :	1 1 303 24	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 10
53 54 55 56 56 57 58 59 60 61 62 63 63 63 62 64 64 62 65 66 66 66 66 66 66 66 66 66 66 66 66	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	41 41 41 41 41 41 41 41 41 41 41 41 41 4	1 1 2 2 1 1 1 5 5 5 5 117 1 4 2 2 988 399 399		3 1		1 1 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10 2 2 1 1		2 3 1 1 32 32 14		14		2 2 2 1 1 1 1 1 1 1 1	1	1 2 1 205 1 3 3 3 3 1 1 1 3	771	1 1 43	1	10		84 1		2 2 2 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3	3 3 :	1 1 303 24	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	110
53 54 55 56 57 58 59 60 61 62 63 6302 64 6402 6603 6604 6607 6609 6607 6609 6607 6609	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	41 41 41 41 41 41 41 41 41 41 41 41 41 4	1 1 2 2 1 1 1 5 5 5 5 117 1 4 2 2 988 399 399		3 1		1 1 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10 2 2 1 1		2 3 1 1 32 32 14		14		2 2 2 1 1 1 1 1 1 1 1	1	1 2 1 205 1 3 3 3 3 1 1 1 3	771	7 7 1 1 1 1 43	1	10		84 1		2 2 2 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3	3 3 :	1 1 303 24	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
53 54 55 56 57 58 59 60 61 62 63 63 63 62 64 64 60 66 66 66 66 66 66 66 66 66 66 66 66	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	41 41 41 41 41 41 41 41 41 41 41 41 41 4	1 1 2 2 1 1 1 5 5 5 5 117 1 4 2 2 988 399 399		3 1		1 1 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10 2 2 1 1		2 3 1 1 32 32 14		14		2 2 2 1 1 1 1 1 1 1 1	1	1 2 1 205 1 3 3 3 3 1 1 1 3	771	7 7 1 1 1 1 43	1	10		84 1		2 2 2 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3	3 3 :	1 1 303 24	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 10 10
53 54 55 56 57 58 59 60 61 62 63 63 63 64 64 64 62 66 66 66 66 66 66 66 66 66	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 2 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3 1		1 1 255 1 1 1 1 2 2 5 2 5 2 5 2 5 2 5 2		10 2 2 1 1 1		32 3 2 3 2		14 4		2 2 1 1 1 1 1 1 1 1 1 7 7	1	1 1 2 2 1 1 1 3 3 3 3 1 1 3 3 2 2	7711	77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	10		12 3		2 2 1 1 49 2		2 6 6 1 1 1 1 1 1 1 5 5 8 8 4 4	3 3 2	3 3 :	1 1 303 24	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 10 10
53 54 55 56 57 58 59 60 61 62 63 63/02 63/03 64 64/02 65 66 66/02 66/04 66/07 66/08 67 68 68/07 68/02 69/03 70 70 70 70 70 70 72	1 1 1 1 1 3 1 3 3 1 3 3 1 5 2 8 1 1 7 7 7 8 8 9 9 9 1 1 1 8 1 8 1 1 1 1 1 1 1 1 1		1 1 2 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3 1 3 2		1 1 25 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1		10 2 2 1 1 1		32 33 2 32 34 77		14		2 2 1 1 1 1 1 1 1 1 7 7	1	11 22 11 205 11 3 3 3 31 113 2	7711	7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	10		84 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 5 1 1 1 1 5 8 8 4 4 1 1 7 7	3 3 2	3 3 :	1 1 303 24 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 10
53 54 55 56 57 58 59 60 61 62 63 6302 6303 64 6402 6603 6607 6608 6607 6608 67 68 6802 6803 67 6809 6903 70 70002 71002	1 1 1 1 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	444	1 1 2 2 2 4 1 1 2 2 988 39 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3 3 2 2 27 1		1 1 255 1 1 1 1 2 2 5 2 5 2 5 2 5 2 5 2		10 2 2 1 1 1 1 4 4 5		32 33 2 14 7		14 4		2 2 1 1 1 1 1 1 1 1 1 7 7	1	1 1 2 2 1 1 3 3 3 3 3 1 1 3 3 2 2 3 2 4 4	7711	7 7 1 1 1 1 43 43 13 1 1 1 1 18 2 2 18 2 2 18 2 2 1 1 1 1 1	1	10		12 3		2 2 2 1 1 49 2 2 1 1 1 3 3 2		2 6 6 1 1 1 1 1 1 1 5 5 8 8 4 4	3 3 2	3 3 :	1 1 4 3 3 3 1 1 1 1 1 1 9 9 9 3 3 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
53 54 55 56 57 58 59 60 61 62 63 63 63 63 64 64 64 62 65 66 66 66 66 66 66 66 66 66	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 2 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3 1 3 2		1 1 25 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1		10 2 2 1 1 1		32 33 2 32 34 77		14 4		2 2 1 1 1 1 1 1 1 1 7 7	1	11 22 11 205 11 3 3 3 31 113 2	7711	7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	10		12 3		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2 6 6 1 1 1 1 1 1 1 5 5 8 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3 2	3 3 :	1 1 303 24 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
53 54 55 56 57 58 59 60 61 62 63 63 63 64 64 62 65 66 66 66 67 66 60 60 60 61 61 62 63 63 63 63 63 64 64 64 65 66 66 67 68 68 69 69 69 69 69 69 69 69 69 69	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 2 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3 3 2 2 27 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10 2 2 1 1 1 1 4 4 5		32 33 2 14 7		14 4		2 2 1 1 1 1 1 1 1 1 7 7	1	1 1 2 205 1 1 3 3 3 1 1 3 3 2 2 4 4 1 1	77 11	7 7 1 1 1 1 43 43 13 1 1 1 1 18 2 2 18 2 2 18 2 2 1 1 1 1 1	1	10		12 3		2 2 2 1 1 49 2 2 1 1 1 3 3 2		1 1 1 1 1 5 1 1 1 1 5 8 8 4 4 1 1 7 7	3 3 2	3 3 :	1 1 4 3 3 3 1 1 1 1 1 1 9 9 9 3 3 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 10 10 3
53 54 55 56 56 57 58 59 60 61 62 63 63 63 62 63 63 64 64 64 62 66 66 66 66 66 66 66 66 66 7 68 68 68 67 68 68 69 70 70 70 70 71 71 71 71 71 71 71 71 71 71 71 71 71	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 2 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3 3 2 2 27 1		1 1 25 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1		10 2 2 1 1 1 1 4 4 5		32 33 2 14 7		14 4		2 2 1 1 1 1 1 1 1 1 7 7	1	1 1 2 2 1 1 3 3 3 3 3 1 1 3 3 2 2 3 2 4 4	77 11	7 7 1 1 1 1 43 43 13 1 1 1 1 18 2 2 18 2 2 18 2 2 1 1 1 1 1	1	10		12 3		2 2 2 1 1 49 2 2 1 1 1 3 3 2		2 6 6 1 1 1 1 1 1 1 5 5 8 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3 2	3 3 :	1 1 4 3 3 3 1 1 1 1 1 1 9 9 9 3 3 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10
53 54 55 56 57 58 59 60 61 62 63 63 63 64 64 62 65 66 66 66 67 66 60 60 60 61 61 62 63 63 63 63 63 64 64 64 65 66 66 67 68 68 69 69 69 69 69 69 69 69 69 69	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	444	1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3 3 2 2 27 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10 2 2 11 1 1 1 4 4 5 1		32 33 2 32 14 7		7		2 2 2 1 1 1 1 1 1 1 1 7 7	3	1 1 2 2 1 1 1 3 3 3 3 1 1 3 3 2 2 4 4 1 1 1 1 1 1	77 11	7 1 1 1 43 43 13 1 1 1 1 18 2 2 2	1 1 1 1 1 1 1	1 1 3 3		12 3		2 2 2 1 1 49 2 2 1 1 1 3 3 2		2 6 6 1 1 1 1 1 1 5 5 8 8 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3 2 2	3 3 :	1 1 4 3 3 3 3 3 3 3 2 4 2 2 2 2 3 3 1 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3 3 1 2 2 3 3 3 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11
53 54 55 56 56 57 58 59 60 61 62 63 63,02 63,03 64 64,002 65 66 66,02 66,04 66,07 66,07 68 66,07 68 66,07 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24	3 3 1 2 2 27 1 1 1 1	11	1 1 1 2 2 5 1 1 1 1 2 2 5 1 1 1 1 1 1 1		10 2 2 11 1 1 1 4 4 5 1		32 33 2 14 7		7		2 2 2 1 1 1 1 1 1 1 1 7 7	3 3 11	1 1 2 2 1 1 2 2 5 1 1 3 3 3 2 4 4 1 1 1 1 3 3 2 2 3 2 4 4 1 1 1 3 3 2 3 2 4 4 3 3 2 3 3 3 3 3 3 3 3 3 3	77 1 1 2 2	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 3 3		12 3 1	1	2 2 2 1 1 49 2 16 8	5	2 6 6 1 1 1 1 1 1 1 1 5 5 1 1 1 1 1 1 1 1	3 3 2 2	3 3 2 2	1 1 4 3 3 3 1 1 1 1 1 1 9 9 9 3 3 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 3
53 54 55 56 56 57 58 59 60 61 62 63 63/02 63/02 65 66 66 66 66 66 66 66 67 66 68 67 70 70 70 71 71 71 72 73 74	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	444	1 1 2 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24	3 3 1 2 2 27 1 1 1 1		1 1 1 2 2 5 1 1 1 1 2 2 5 1 1 1 1 1 1 1		10 2 2 11 1 1 1 4 4 5 1		32 33 2 14 7		7		2 2 1 1 1 1 1 1 7 7	3 3 11	1 1 2 2 1 1 205 1 3 3 3 3 1 1 3 3 2 2 4 4 1 1 1 1 1 1 3 3 2 3 2 3 2 4 4 1 1 1 1 1 3 3 2 3 2 3 3 3 3 3 3 3 3 3 3	77 1 1 2 2	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 3 3		12 3 1 1	1	2 2 2 1 49 2 1 1 1 1 3 2 1	5	2 6 6 1 1 1 1 1 1 1 1 5 5 1 1 1 1 1 1 1 1	3 3 2 2	3 3 2 2	1 1 4 3 3 3 1 1 1 1 1 1 9 9 9 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3
53 54 55 56 57 58 59 60 61 62 63 63 63 63 64 64 64 62 65 66 66 66 66 66 66 66 66 66	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	444	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24 3	3 3 2 27 1 1 1		1 1 1 2 2 5 1 1 1 1 1 0 2 1 1 4 5 1 1 1 1 7 7	5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	32 33 2 32 14 7		7711	1	2 2 1 1 1 1 1 1 7 7	3 3 11	1 1 2 2 1 1 205 1 3 3 3 3 1 1 3 3 2 2 4 4 1 1 1 1 1 1 3 3 2 3 2 3 2 4 4 1 1 1 1 1 3 3 2 3 2 3 3 3 3 3 3 3 3 3 3	77 1 1 2 2	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 3 3		12 3 1 1	1 2	10 10 10 10 10 10 10 10 10 10 10 10 10 1	5	2 2 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3 2 2	3 3 2 2	1 1 303 24 2 2 2 1 1 1 1 2 9 9 3 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3
53 54 55 56 56 57 58 59 60 61 62 63 63/02 63/02 65 66 66 66 66 66 66 66 67 66 68 67 70 70 70 71 71 71 72 73 74	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24 3	33 2 2 27 1 1 1 1 1 1 1 3 3 9	20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5	10 2 2 1 1 1 1 1 4 4 5 5 1 1 2 2 2 3 2 3 3	1	2 3 1 1 32 3 2 2 14 7,7	4	7711	1	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	1 1 2 2 1 1 2 2 1 1 3 3 3 2 2 4 4 1 1 1 1 1 3 2 2 2	77 11 22 2 300 2	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 11 3 3 2 2 2 7 7	1	12 3 1 1 8 8	1 2	1 1 1 1 1 1 1 2 1 1 1 1 2 2 1 1 1 1 2	5 6 2 2	2 2 6 6 1 1 1 1 1 1 1 2 5 5 8 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18 3	3 3 2 2 8 3 3 4 4	1 1 303 24 2 2 2 111 1 9 9 3 1 2 2 2 3 3 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3

A:届出特定事業場数

B:Aの内平均排水量50m³/日以上の事業場数

⑦ 瀬戸内海環境保全特別措置法に基づく許可特定事業場数

(令和7年3月31日現在累計数)

																					101 30人	
	工場数 A	В	和歌山市 A	В	岩出市 A	В	海南市 A	В	紀の川市 A	В	橋本市 A	В	有田市 A	В	海草郡 A	В	伊都郡 A	В	有田郡 A	В	日高郡 A	В
1	1	1				ů		٥	1	1		Ľ		-	^	Ľ		Ľ				Ľ
102		<u> </u>																				
3	3		1	1			1	1					1									
4	3																3	3				
5	1	1							1	1												
7																						
8																						-
10	8				1	1	4	4	2	2							1	1				
11	1								1	1												
12	1	1															1	1				-
14																						
15																						
16 17	1	1	1	1																		
18																						
1802	2	2							2	2												-
18の3 19	8	8	2	2	1	1			1	1	4	4										
20		_																				
21 21Ø2																						
21002																						
21の4																						
22 23																						-
230)2																						
24																						
25 26																						
27	3	3	3	3																		
28																						-
29 30																						
31																						
32 33	1	2	2	1																		
34																						
35																						
36 37	1		1																			
38			·																			
3802																						-
39 40																						
41																						
42 43																						
44																						
45		_								1							1					
46 47	7	7 2	4 2				1	1	- 1	1							1	1				
48																						
49 50																						\vdash
51	1	1					1	1														
51002																						-
51の3 52																						
53																						
54 55																						-
56																						
57 58																						
58 59	1	1									1	1										
60																						
61	1	1					1	1														<u> </u>
62 63	1	1							1	1		L									L	
63Ø2																						
63の3 64																						
64の2	6		5	5			1	1														
65	4												1	1								
66 66の2																						
66の3	16				1		1	1					2	2	1	1	4	3			1	1
66の4	2	2	1	1									1									<u> </u>
66の5 66の6	3 7								2	1					1	1			1	1		
66 の 7																						
66Ø8		4	1	1	1	1			2	_												
67 68	- 4	└							2	2												
68の2	2	2	1	1															1	1		
69 69の2	1		1	1																		
69の3	'	'	<u> </u>	'																		
70																						
70の2 71	1	1	1	1																		
71の2	1		<u> </u>	'					1	1												
71の3																						
71の4 71の5																						
71の6																						
72	44	43	29	28	2	2	2	2	4	4	1	1	2	2	1	1	1	1	2	2		
73	4	4	3	3			1	1														
74		. 4	. 3	. 3	0	1	. 1	1		18				8	3		11	10	1			

A:許可(届出)特定事業場数

B:Aの内平均排水量50m³/日以上の事業場数

⑧ 騒音規制法に基づく施設等届出状況

ア 特定施設届出数

(令和6年度末現在累計数)

	騒音規制法施行令別表第一	届							届出:	地域内	可訳						
号	施設の種類	出施設数	和歌山市	海南市	橋本市	有田市	御坊市	田辺市	新宮市	紀の川市	岩出市	海草郡	伊都郡	有田郡	日高郡	西牟婁郡	東牟婁郡
1	金属加工機械	993	559	78	27	28	62	21		154			6	34	2	18	4
2	空気圧縮機及び送風機	5, 208	3,604	532	263	53	102	56	10	221	17	2	13	60	63	158	54
3	土石·鉱物用破砕機等	278	178	7	26	2	5	14	3	21	1	1	2	1	8	2	7
4	織機	404	348		56												
5	建設用資材製造機械	46	18	2	3		4	6							6		7
6	穀物用製粉機	2			2												
7	木材加工機械	522	395	45	15		23	12	2	11				1	15	3	
8	抄紙機	4				4											
9	印刷機械	156	125	1		3	3	5		8			1	1		9	
10	合成樹脂用射出成形機	110	48	26	14		15						3	4			
11	鋳型造型機	8			8												
	計	7, 731	5, 275	691	414	90	214	114	15	415	18	3	25	101	94	190	72
	特定工場等の数	1,112	614	80	50	19	41	33	8	40	17	1	6	19	48	110	26

イ 特定建設作業届出数

(令和6年度分)

	騒音規制法施行令別表第二								届出	地域内	可訳						
号	作業の種類	届出件数	和歌山市	海南市	橋本市	有田市	御坊市	田辺市	新宮市	紀の川市	岩出市	海 草 郡	伊都郡	有田郡	日高郡	西牟婁郡	東牟婁郡
1	くい打機等を使用する作業	66	9	11	4	3	1	1	1	7	12		1	2	3	4	7
2	びょう打機を使用する作業	2			2												
3	さく岩機を使用する作業	488	215	22	45	13	31	33	13	13	11	2	3	20	28	12	27
4	空気圧縮機を使用する作業	96	12	10	13	10	2	7	1	2	4	2		3	9	11	10
5	コンクリートプラント等を設けて行う作業	1							1								
6	バックホウを使用する作業	157		23	29	9	11	11	2	12		1	1	1	12	14	31
7	トラクターショベルを使用する作業	1					1										
8	ブルドーザーを使用する作業	19	1		3		2	2								1	10
	計	830	237	66	96	35	48	54	18	34	27	5	5	26	52	42	85

⑨ 振動規制法に基づく施設等届出状況

ア 特定施設届出数

(令和6年度末現在累計数)

	振動規制法施行令別表第一	届							届出:	地域内	引訳						
뮺	施設の種類	出施設数	和歌山市	海南市	橋本市	有田市	御坊市	田辺市	新宮市	紀の川市	岩出市	海草郡	伊都郡	有田郡	日高郡	西牟婁郡	東牟婁郡
1	金属加工機械	943	523	17	30	22	62	21	2	159			3	43		59	2
2	圧縮機	3,053	2, 298	214	113	100	55	13	6	101	13		10	38	39	44	9
3	土石·鉱物用破砕機等	377	282		27		4	15	2	22	5	1	1	1	8	2	7
4	織機	71			56	15											
5	コンクリートブロックマシン	14	2	1	4	5				1					1		
6	木材加工機械	41	12		1		2	8	1	10				1	2	4	
7	印刷機械	71	40		2	3	3	6		8				1		8	
8	ゴム練用合成樹脂練用ロール機	34		25	8											1	
9	合成樹脂用射出成形機	78	61		4	6							3	4			
10	鋳型造型機	0															
	計	4,682	3, 218	257	245	151	126	63	11	301	18	1	17	88	50	118	18
	特定工場等の数	676	357	39	40	25	23	19	6	36	17	1	5	19	19	59	11

イ 特定建設作業届出数

(令和6年度分)

	騒音規制法施行令別表第二								届出:	地域内	引訳						
号	作業の種類	届出件数	和歌山市	海南市	橋本市	有田市	御坊市	田辺市	新宮市	紀の川市	岩出市	海草郡	伊都郡	有田郡	日高郡	西牟婁郡	東牟婁郡
1	くい打機等を使用する作業	62	10	10	8	4	1	1	1	6	6			3	2	3	7
2	剛球を使用して建設物を破壊する作業	0															
3	舗装版破砕機を使用する作業	9		1	1						4		1	1			1
4	ブレーカーを使用する作業	406	156	30	37	11	16	25	7	13	14	1	2	14	22	32	26
	計	477	166	41	46	15	17	26	8	19	24	1	3	18	24	35	34

⑩ ダイオキシン類対策特別措置法に基づく施設等届出状況

ダイオキシン類対策特別措置法に基づく施設等届出状況

(ア) 特定施設(大気基準適用施設)届出数

(令和7年3月31日現在累計数)

	ħ	拖行令別表第1	. 届				届	出	1	地		域	Į.	为	訳			
号		施設の種類	出施設数	和歌山市	海南市	橋本市	有田市	御坊市	田辺市	新宮市	紀の川市	岩出市	海草郡	伊都郡	有田郡	日高郡	西牟婁郡	東牟婁郡
1	焼結鉱の	製造の用に供する焼結炉	3	3														
2	製鋼用電	気炉	2	2														
3	亜鉛回収	0	0															
4	アルミニウ	0	0															
		焼却能力4t/h以上	7	7														
		2t/h以上~4t/h未満	15	4	1	2	0	2	2	0	2	0	0	0	2	0	0	0
5	廃棄物 焼却炉	200kg/h以上~2t/h未満	33	11	1	2	0	0	1	3	1	2	0	0	0	0	6	6
		200kg/h未満	47	11	1	1	0	1	5	1	5	0	2	4	2	2	9	3
		102	33	3	5	0	3	8	4	8	2	2	4	4	2	15	9	
		107	38	3	5	0	3	8	4	8	2	2	4	4	2	15	9	
	事	82	26	3	4	0	2	7	3	7	1	1	4	3	2	13	6	

	施行	r令別表第2	届						扂	出	等地 均	或内割	尺					
号	施	設の種類	出等施設数	和歌山市	I∓J	本	田	坊	田辺市	宮	紀の川市	出	草	伊都郡	田	日高郡	牟婁	東牟婁郡
1		亜硫酸パルプの製造の用に供す 合物による漂白施設																
2	カーバイド法アセチレン洗浄施設	ノンの製造の用に供するアセチ																
3	硫酸カリウムの製造 洗浄施設	での用に供する施設のうち廃ガス																
4	アルミナ繊維の製造	の用に供する廃ガス洗浄施設																
5		造の用に供する焼成炉から発生 施設のうち廃ガス洗浄施設																
6	塩化ビニルモノマー レン洗浄施設	の製造の用に供する二塩化エチ																
7	のに限る。)の用に	き(塩化ニトロシルを使用するも 共する施設のうち硫酸濃縮施 分離施設及び廃ガス洗浄施設																
8		ジクロロベンゼンの製造の用に 水洗施設及び廃ガス洗浄施設																
9		素ナトリウムの製造の用に供す 施設、乾燥施設、廃ガス洗浄施																
10		-フトキノンの製造の用に供する 設、廃ガス洗浄施設																
11	化誘導体分離施設。 化誘導体洗浄施設。	レットの製造の用に供するニトロ、還元誘導体分離施設、ニトロ、、還元誘導体洗浄施設、ジオキ ・静施設及び熱風乾燥施設																
12		造施設から発生するガスを処理 ス洗浄施設及び湿式集じん施																
13	亜鉛の回収の用に付 設及び湿式集じんが	共する精製施設、廃ガス洗浄施 函設																
14	担体付き触媒からのうちろ過施設、精)金属の回収の用に供する施設 製施設及び廃ガス洗浄施設																
		焼却能力4t/h以上	3	3														
	廃棄物焼却炉に係 る廃ガス洗浄施 設、湿式集じん施	2t/h以上~4t/h未満	6	1	1				2		1				1			
	設及び灰の貯留施設であって汚水又	200kg/h以上~2t/h未満 	10	3		1			1	1							2	2
	は廃液を排出する もの	200kg/h未満	1							1								
		小計	20	7	1	1			3	2	1				1		2	2
16	汚染物又はPCB処																	
17		引に供する施設のうちプラズマ反 施設及び湿式集じん施設																
18	下水道終末処理施		2	2														
19	水質基準対象施設 排出される水の処理	を設置する工場又は事業場から 単施設																
		計	22	9	1	1			3	2	1				1		2	2
	事	業場数	18	7	1	1			2	2	1				1		2	1

(ウ) 自主測定報告件数等(大気基準適用施設)

(令和6年度)

		施行令別表第1		報告	状況		排出ガス測定結果	₹(ng-TEQ/m³N)
号		施設の種類	報告対象 施設数	休止中等 施設数	未報告 施設数	報告 施設数	最小値	最大値
1	焼結鉱の製	造の用に供する焼結炉	3	1		2	0.0083	0.029
2	製鋼用電気	炉	2			2	0.0047	0.18
3	亜鉛回収施	設						
4	アルミニウム	合金製造施設						
		焼却能力4t/h以上	7	3		4	0.0024	0.040
		2t/h以上~4t/h未満	15	2		13	0.00000057	0.17
5	廃棄物 焼却炉	200kg/h以上~2t/h未満	33	8		25	0.00000072	4.7
		200kg/h未満	47	17		30	0.0000023	2.1
		小計	102	30		72		
		計	107	31		76		

	施行	令別表第2		報告	·状況		排出水測定結	果(pg-TEQ/L)
号	施	設 の 種 類	報告対象 事業場数	休止中等 事業場数	未報告 事業場数	報告 事業場数	最小値	最大値
1		亜硫酸パルプの製造の用に供 比合物による漂白施設						
2	カーバイド法アセチL レン洗浄施設	ンの製造の用に供するアセチ						
3	硫酸カリウムの製造 ス洗浄施設	の用に供する施設のうち廃ガ						
4	 アルミナ繊維の製造 	の用に供する廃ガス洗浄施設						
5		造の用に供する焼成炉から発 る施設のうち廃ガス洗浄施設						
6	塩化ビニルモノマー チレン洗浄施設	の製造の用に供する二塩化エ						
7	のに限る。)の用に係	≦(塩化ニトロシルを使用するも 共する施設のうち硫酸濃縮施 分離施設及び廃ガス洗浄施設						
8		ジクロロベンゼンの製造の用に 水洗施設及び廃ガス洗浄施設						
9		素ナトリウムの製造の用に供 過施設、乾燥施設、廃ガス洗浄						
10	る施設のうち、ろ過か	フトキノンの製造の用に供す 拖設、廃ガス洗浄施設						
11	口化誘導体分離施言 口化誘導体洗浄施言	レットの製造の用に供するニト 役、還元誘導体分離施設、ニト 役、還元誘導体洗浄施設、ジオ 、洗浄施設及び熱風乾燥施設						
12		造施設から発生するガスを処 ガス洗浄施設及び湿式集じん						
13	亜鉛の回収の用に係施設及び湿式集じん	共する精製施設、廃ガス洗浄 施設						
14)金属の回収の用に供する施 精製施設及び廃ガス洗浄施設						
		焼却能力4t/h以上	1			1	0.0019	0.0019
	廃棄物焼却炉に係 る廃ガス洗浄施	2t/h以上~4t/h未満	2	1		1	0.029	0.03
15	設、湿式集じん施 設及び灰の貯留施 設であって汚水又	200kg/h以上~2t/h未満	4	2		2	0.0000	0.00440
	は廃液を排出するし	200kg/h未満					0	0
		小計	7	2		5		
16	廃PCB等又はPCB 汚染物又はPCB処	処理物の分解施設及びPCB 理物の洗浄施設						
17		に供する施設のうちプラズマ :浄施設及び湿式集じん施設						
18	下水道終末処理施記	· 设	2			2	0.00093	0.0019
19	水質基準対象施設で ら排出される水の処	を設置する工場又は事業場か 理施設						
		計	9	3		6		

9-2 条例に基づく届出状況

① 大気関係特定施設設置届出数

(令和6年度分)

				届出							届出	地域	内訳						
	項	施設の	種類	山施設数	和歌山市	海南市	橋本市	田	御坊市	田辺市	新宮市	紀の川市	岩出市	海草郡	伊都郡	有田郡	日高郡	西牟婁郡	東牟婁郡
			(2)反応施設	13	13														
	6	化学製品(医薬品を含む。)又は石油製品若し	(5)精製施設	2	2														
		くは石炭製品の製造の 用に供するもの	(11)蒸発·濃縮施設	1	1														
			(15)混合施設	1	1														
	1	粉体原材料等の堆積場		3	3														
	2	ベルトコンベア		7	1												4	2	
	3	粉砕施設		13	8					2	1	1						1	
粉	4	ふるい		11	9												2		
じん	_	セメント加工又は製造の	(1)セメントサイロ	3										1				1	1
	5	用に供するもの	(3)バッチャープラント	3										1				1	1
	6	鉄鋼又は非鉄金属の加 工の用に供するもの	(2)研磨施設	1		1													
	9	研磨施設		6	6														
		計		64	44	1	0	0	0	2	1	1	0	2	0	0	6	5	2
		工場・事業場数	:	14	5	1				1	1	1		1			1	2	1

		届							届出	地域内	引訳						
項	施設の種類	田出施設数	和歌山市	海南市	橋本市	有田市	御坊市	田辺市	新宮市	紀の川市	岩出市	海草郡	伊都郡	有田郡	日高郡	西牟婁郡	東牟婁郡
	(1) 圧延機械	0															
	(2) 製管機械	0															
	(3) ベンディングマシン	0															
	(4)液圧プレス	0															
	(5) 機械プレス	0															
1	(6) せん断機	0															
1	(7) 鍛造機	0															
	(8) ワイヤーフォーミングマシーン	0															
	(9) ブラスト	0															
	(10) タンブラー	0															
	(11) 工作機械	0															
	(12) 切断機	0															
2	空気圧縮機及び送風機	0															
3	土石・鉱物用破砕機等	0															
4	織物	0															
5	(1) コンクリートプラント	0															
J	(2) アスファルトプラント	0															
6	穀物用製粉機	0															
	(1) ドラムパーカー	0															
	(2) チッパー	0															
7	(3) 砕木機	0															
	(4) 帯のこ盤	0															
	(5) 丸のこ盤	0															
	(6) かんな盤	0															
8	抄紙機	0															
9	印刷機械	0															
10	合成樹脂用射出成形機	0															
11	鋳型造成機	0															
12	工業用ミシン及びメリヤス編機	0															
13	コンクリート管等製造器	0															
14	打貫機	0															
15	コルゲートマシン	0															
16	キュポラ	0															
17	研磨機	0															
18	天井走行クレーン及び門型走行クレーン	1							1								
19	ロータリーキルン	0															
20	クーリングタワー	0															
21	染色機械	0															
22	幅出機械	0															
23	風力発電施設	0															
	計	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	特定工場等の数	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

③ 振動関係特定施設設置届出数

(令和6年度分)

		届							届出	地域内	可訳						
項	施設の種類	出施設数	和歌山市	海南市	橋本市	有田市	御坊市	田辺市	新宮市	紀の川市	岩出市	海草郡	伊都郡	有田郡	日高郡	西牟婁郡	東牟婁郡
	(1) 液圧プレス	0															
	(2)機械プレス	0															
	(3) せん断機	0															
1	(4) 鍛造機	0															
	(5) ワイヤーフォーミングマシーン	0															
	(6)圧延機械	0															
	(7)製管機械	0															
2	圧縮機	0															
3	破砕機・摩砕機・ふるい等	0															
4	織物	0															
5	コンクリートブロックマシン	0															
6	(1) ドラムパーカー	0															
	(2) チッパー	0															
7	印刷機械	0															
8	ロール機	0															
9	合成樹脂用射出成形機	0															
10	鋳型造成機	0															
11	****																
	ਜ਼ੇ- ਜ਼-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	特定工場等の数	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

9-3 第一種指定化学物質の排出量及び移動量の届出状況

(令和6年度届出・令和5年度排出移動)

単位:kg/年

	届出事		1	排出量 ※1				移動量 ※2			
業種	業所数	大気	公共用水域	土壌	埋立	排出量合計	下水道	廃棄物	移動量合計	排出•移動量合計	割合
食料品製造業	4	47,324	0	0	0	47,324	0	0	0	47,324	0.92%
飲料・たばこ・飼料製造業	2	0	6,734	0	0	6,734	0	0	0	6,734	0.13%
繊維工業	5	7,080	1,264	0	0	8,344	180	1,023	1,203	9,547	0.19%
木材·木製品製造業	5	0	0	0	0	0	0	0	0	0	0.00%
パルプ・紙・紙加工品製造 業	3	67	71	0	0	138	0	101	101	239	0.00%
化学工業	32	84,416	6,610	0	0	91,026	5,124	2,194,556	2,199,680	2,290,706	44.61%
医薬品製造業	4	765	0	0	0	765	0	3,662	3,662	4,427	0.09%
石油製品·石炭製品製造業	10	83,201	0	0	0	83,201	0	82	82	83,283	1.62%
プラスチック製品製造業	5	301,470	0	0	0	301,470	0	238,372	238,372	539,842	10.51%
ゴム製品製造業	2	3,494	0	0	0	3,494	0	5,600	5,600	9,094	0.18%
窯業·土石製品製造業	2	62	0	0	0	62	0	290	290	352	0.01%
鉄鋼業	5	22,280	1,049	0	0	23,329	0	1,794,793	1,794,793	1,818,122	35.41%
非鉄金属製造業	2	200	0	0	0	200	0	2,609	2,609	2,809	0.05%
金属製品製造業	14	100,934	40	0	0	100,974	0	20,253	20,253	121,227	2.36%
一般機械器具製造業	7	22,831	0	0	0	22,831	0	995	995	23,826	0.46%
電気機械器具製造業	4	7,202	0	0	0	7,202	0	1,206	1,206	8,408	0.16%
輸送用機械器具製造業	1	31,800	0	0	0	31,800	0	10,790	10,790	42,590	0.83%
船舶製造·修理業、舶用機 関製造業	1	62,006	0	0	0	62,006	0	3,279	3,279	65,285	1.27%
精密機械器具製造業	2	10,432	0	0	0	10,432	0	65	65	10,497	0.20%
その他の製造業	1	710	0	0	0	710	0	360	360	1,070	0.02%
電気業	2	591	0	0	0	591	0	1,100	1,100	1,691	0.03%
下水道業	18	0	24,899	0	0	24,900	0	0	0	24,900	0.48%
石油卸売業	1	41	0	0	0	41	0	0	0	41	0.00%
燃料小売業	96	16,239	0	0	0	16,239	0	0	0	16,239	0.32%
洗濯業	2	5,406	0	0	0	5,406	0	840	840	6,246	
一般廃棄物処理業(ごみ処 分業に限る。)	16	0	69	0	0	69	0	0	0	69	0.00%
産業廃棄物処分業	2	0	327	0	0	327	0	0	0	327	0.01%
自然科学研究所	3	0	0	0	0	0	0	0	0	0	0.00%
合計	251	808,553	41,063	0	0	849,616	5,304	4,279,975	4,285,280	5,134,895	100.00%
割合	=	15.7%	0.8%	0.00%	0.00%	16.5%	0.1%	83.4%	83.5%	100.00%	-

^{※1} 大気: 大気への排出、水域: 公共用水域への排出、土壌: 事業所内への排出、埋立: 事業所内への 埋立処分

^{※2} 下水道:下水道への移動、事業所外:事業所外への廃棄物としての移動

令和6年度 環境保全データ集

令和7年11月

編集・発行

和歌山県 環境生活部環境政策局環境管理課

〒640-8585 和歌山市小松原通一丁目1番地

TEL. 073-441-2688